Nipacide BIT 20 ALPHA CHEMICALS PTY LTD Chemwatch: 8829-15 Version No: **3.1**Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements Chemwatch Hazard Alert Code: 3 Issue Date: **01/11/2019** Print Date: **14/03/2022** S.GHS.AUS.EN ### SECTION 1 Identification of the substance / mixture and of the company / undertaking ### Product Identifier | Product name | Nipacide BIT 20 | | |-------------------------------|--|--| | Chemical Name | Not Applicable | | | Synonyms | Not Available | | | Proper shipping name | CORROSIVE LIQUID, N.O.S. (contains Sodium Hydroxide) | | | Chemical formula | Not Applicable | | | Other means of identification | Not Available | | ### Relevant identified uses of the substance or mixture and uses advised against ### Details of the supplier of the safety data sheet | Registered company name | ALPHA CHEMICALS PTY LTD | | |-------------------------|---|--| | Address | ALLEN PLACE WETHERILL PARK NSW 2099 Australia | | | Telephone | 61 (0)2 9982 4622 | | | Fax | Not Available | | | Website | ~ | | | Email | shane@alphachem.com.au | | ### Emergency telephone number | Association / Organisation | ALPHA CHEMICALS PTY LTD | CHEMWATCH EMERGENCY RESPONSE | |-----------------------------------|-------------------------|------------------------------| | Emergency telephone numbers | 61 (0)418 237 771 | +61 1800 951 288 | | Other emergency telephone numbers | Not Available | +61 2 9186 1132 | Once connected and if the message is not in your prefered language then please dial 01 ### **SECTION 2 Hazards identification** ### Classification of the substance or mixture ### HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. ### ChemWatch Hazard Ratings | | Min | Max | | |--------------|-----|-----|-------------------------| | Flammability | 1 | | | | Toxicity | 2 | | 0 = Minimum | | Body Contact | 3 | - 1 | 1 = Low | | Reactivity | 1 | | 2 = Moderate | | Chronic | 2 | | 3 = High
4 = Extreme | | Poisons Schedule | S6 | |-------------------------------|--| | Classification ^[1] | Acute Toxicity (Oral) Category 4, Skin Corrosion/Irritation Category 1B, Serious Eye Damage/Eye Irritation Category 1, Sensitisation (Skin) Category 1, Hazardous to the Aquatic Environment Acute Hazard Category 1, Corrosive to Metals Category 1 | | Legend: | 1. Classified by Chernwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | ### Label elements Nipacide BIT 20 Issue Date: **01/11/2019**Print Date: **14/03/2022** ### Hazard pictogram(s) | Signal word | Da | |-------------|----| | | | ### Hazard statement(s) | H302 | Harmful if swallowed. | |------|--| | H314 | Causes severe skin burns and eye damage. | | H317 | May cause an allergic skin reaction. | | H400 | Very toxic to aquatic life. | | H290 | May be corrosive to metals. | ### Precautionary statement(s) Prevention | P260 | Do not breathe mist/vapours/spray. | | |------|--|--| | P264 | Wash all exposed external body areas thoroughly after handling. | | | P280 | Wear protective gloves, protective clothing, eye protection and face protection. | | | P234 | Keep only in original packaging. | | | P270 | Do not eat, drink or smoke when using this product. | | | P273 | Avoid release to the environment. | | | P272 | Contaminated work clothing should not be allowed out of the workplace. | | ### Precautionary statement(s) Response | P301+P330+P331 | IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. | | |----------------|--|--| | P303+P361+P353 | IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower]. | | | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | | P310 | Immediately call a POISON CENTER/doctor/physician/first aider. | | | P302+P352 | IF ON SKIN: Wash with plenty of water. | | | P363 | Wash contaminated clothing before reuse. | | | P333+P313 | If skin irritation or rash occurs: Get medical advice/attention. | | | P362+P364 | Take off contaminated clothing and wash it before reuse. | | ### Precautionary statement(s) Storage P405 Store locked up. ### Precautionary statement(s) Disposal P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. ### **SECTION 3 Composition / information on ingredients** ### Substances See section below for composition of Mixtures ### Mixtures | CAS No | %[weight] | Name | |---|-----------|-----------------------------| | Not Available | 60-90 | organic solvent | | 2634-33-5 | 10-30 | 1.2-benzisothiazoline-3-one | | 1310-73-2 | 1-<10 | Sodium Hydroxide | | 7732-18-5 | 1-<10 | Distilled Water | | Legend: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. | | | ### **SECTION 4 First aid measures** ### Description of first aid measures **Eye Contact** If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids - Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. - Transport to hospital or doctor without delay. - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. Page 3 of 12 Issue Date: 01/11/2019 Nipacide BIT 20 Print Date: 14/03/2022 | Skin Contact | If skin or hair contact occurs: Immediately flush body and clothes with large amounts of water, using safety shower if available. Quickly remove all contaminated clothing, including footwear. Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. Transport to hospital, or doctor. | |--------------|--| | Inhalation | If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. Inhalation of vapours or aerosols (mists, fumes) may cause lung oedema. Corrosive substances may cause lung damage (e.g. lung oedema, fluid in the lungs). As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested. Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be considered. This must definitely be left to a doctor or person authorised by him/her. (ICSC13719) | | Ingestion | For advice, contact a Poisons Information Centre or a doctor at once. Urgent hospital treatment is likely to be needed. If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Transport to hospital or doctor without delay. | #### Indication of any immediate medical attention and special treatment needed 1,2-Benzisothiazoline-3-one (BIT) is rapidly
metabolised in animals. Neither the substance nor its metabolites accumulate in the liver or adipose tissue. Excretion is mainly via the urine. The main metabolite is o-methylsulfinylbenzamide Treat symptomatically. Chemwatch: 8829-15 Version No: 3.1 For acute or short-term repeated exposures to highly alkaline materials: - ▶ Respiratory stress is uncommon but present occasionally because of soft tissue edema. - Unless endotracheal intubation can be accomplished under direct vision, cricothyroidotomy or tracheotomy may be necessary. - Oxygen is given as indicated. - The presence of shock suggests perforation and mandates an intravenous line and fluid administration. - Damage due to alkaline corrosives occurs by liquefaction necrosis whereby the saponification of fats and solubilisation of proteins allow deep penetration into the tissue. Alkalis continue to cause damage after exposure. INGESTION: Milk and water are the preferred diluents No more than 2 glasses of water should be given to an adult. - ▶ Neutralising agents should never be given since exothermic heat reaction may compound injury. - * Catharsis and emesis are absolutely contra-indicated. - * Activated charcoal does not absorb alkali. - * Gastric lavage should not be used. Supportive care involves the following: - Withhold oral feedings initially. - If endoscopy confirms transmucosal injury start steroids only within the first 48 hours. - ▶ Carefully evaluate the amount of tissue necrosis before assessing the need for surgical intervention. - Patients should be instructed to seek medical attention whenever they develop difficulty in swallowing (dysphagia). SKIN AND EYE: Injury should be irrigated for 20-30 minutes. Eye injuries require saline. [Ellenhorn & Barceloux: Medical Toxicology] ### **SECTION 5 Firefighting measures** ### **Extinguishing media** - ► Water spray or fog. - Foam. - Dry chemical powder. - ► BCF (where regulations permit). - Carbon dioxide. ### Special hazards arising from the substrate or mixture Fire Incompatibility Advice for firefighters Advice for firefighters Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Use fire fighting procedures suitable for surrounding area. Do not approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. Combustible. Slight fire hazard when exposed to heat or flame. - Fire/Explosion Hazard - ▶ Heating may cause expansion or decomposition leading to violent rupture of containers. - On combustion, may emit toxic fumes of carbon monoxide (CO). - May emit acrid smoke. - Mists containing combustible materials may be explosive. Chemwatch: 8829-15 Page 4 of 12 Issue Date: 01/11/2019 Version No: 3.1 Nipacide BIT 20 Print Date: 14/03/2022 Combustion products include: carbon dioxide (CO2) nitrogen oxides (NOx) sulfur oxides (SOx) metal oxides other pyrolysis products typical of burning organic material. May emit corrosive fumes. ### **SECTION 6 Accidental release measures** **HAZCHEM** ### Personal precautions, protective equipment and emergency procedures 2X See section 8 #### **Environmental precautions** See section 12 #### Methods and material for containment and cleaning up | Minor Spills | Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material. Check regularly for spills and leaks. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal. | |--------------|---| | Major Spills | Absorb or contain isothiazolinone liquid spills with sand, earth, inert material or vermiculite. The absorbent (and surface soil to a depth sufficient to remove all of the biocide) should be shovelled into a drum and treated with an 11% solution of sodium metabisulfite (Na2S2O5) or sodium bisulfite (NaHSO3), or 12% sodium sulfite (Na2SO3) and 8% hydrochloric acid (HCl). Glutathione has also been used to inactivate the isothiazolinones. Use 20 volumes of decontaminating solution for each volume of biocide, and let containers stand for at least 30 minutes to deactivate microbicide before disposal. If contamination of drains or waterways occurs, advise emergency services. After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. | Personal Protective Equipment advice is contained in Section 8 of the SDS. ### **SECTION 7 Handling and storage** #### Precautions for safe handling ► DO NOT allow clothing wet with material to stay in contact with skin Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Safe handling Avoid contact with moisture. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. Keep containers securely sealed when not in use. Avoid physical damage to containers. Store in original containers. Keep containers securely sealed. Store in a cool, dry, well-ventilated area. Store away from incompatible materials and foodstuff containers. Other information Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS. DO NOT store near acids, or oxidising agents ▶ No smoking, naked lights, heat or ignition sources. ### Conditions for safe storage, including any incompatibilities Suitable container - Lined metal can, lined metal pail/ can. - Plastic pail. - Polyliner drum. - Packing as recommended by manufacturer. - Check all containers are clearly labelled and free from leaks. For low viscosity materials - Drums and jerricans must be of the non-removable head type. - Where a can is to be used as an inner package, the can must have a screwed enclosure. For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.): - Removable head packaging; - Cans with friction closures and - low pressure tubes and cartridges may be used. Where combination packages are used, and the inner packages are of glass, porcelain or stoneware, there must be sufficient inert cushioning material in contact with inner and outer packages unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic. Chemwatch: 8829-15 Page 5 of 12 Version No: 3.1 Nipacide BIT 20 Issue Date: 01/11/2019 Print Date: 14/03/2022 Sodium hydroxide/ potassium hydroxide: - reacts with water evolving heat and corrosive fumes - reacts violently with acids, trans-acetylene dichloride, aminotetrazole, p-bis(1,3-dibromoethyl), benzene, bromoform, halogenated $compounds, nitrogen-containing\ compounds, organic\ halogens, chlorine\ dioxide\ ((explodes),\ chloroform,\ cresols,\ cyclopentadiene,\ 4-chloroform,\ cyclope$ 2-methylphenol, cis-dichloroethylene, 2,2-dichloro-3,3-dimethylbutane, ethylene chlorohydrin, germanium, iodine pentafluoride, maleic anhydride, p-nitrotoluene, nitrogen trichloride, o-nitrophenol, phosphonium iodide, potassium peroxodisulfate, propylene oxide, 1,2,4,5tetrachlorobenzene (highly toxic substance is forme), 2,2,3,3-tetrafluoro-1-propanol, tetrahydrofuran, thorium dicarbide, trichloroethanol, 2,4,6-trinitrotoluene, vinyl acetate - reacts with fluorine, nitroalkanes, (forming explosive compounds) - incompatible with acetic acid, acetaldehyde, acetic anhydride, acrolein, acrylonitrile, allyl chloride, organic anhydride, acrylates, alcohols, aldehydes, alkylene oxides, substituted allyls, ammonium chloroplatinate, benzanthrone, bromine, benzene-1,4-diol, carbon dioxide, cellulose nitrate, chlorine trifluoride, 4-chlorobutyronitrile, chlorohydrin, chloronitrotoluenes, chlorosulfonic acid, cinnamaldehyde, caprolactam solution, chlorocresols, 1,2-dichloroethylene, epichlorohydrin, ethylene cyanohydrin, formaldehyde (forms formic acid and flammable hydrogen gas), glycols, glycola, hexachloroplatinate, hydrogen sulfide, hydroguinone, iron-silicon, isocyanates, ketones, methyl azide, 4-methyl-2-nitrophenol, mineral acids (forming corresponding salt), nitrobenzene, N-nitrosohydroxylamine, nitrates pentol, phenols, phosphorus, phosphorus pentaoxide, beta-propiolactone, sodium, sulfur dioxide, tetrahydroborate, 1,1,1,2-tetrachloroethane, 2,2,2trichloroethanol, trichloronitromethane, zirconium - ignites on contact with cinnamaldehyde or zinc and reacts explosively with a mixture of chloroform and methane - forms heat-, friction-, and/
or shock-sensitive- explosive salts with nitro-compounds, cyanogen azide, 3-ethyl-4-hydroxy-1,2,5-oxadiazole, 3-methyl-2-penten-4-yn-1-ol, N,N'-bis(2,2,2-trinitroethyl)urea, trichloroethylene (forms dichloroacetylene) - increase the explosive sensitivity of nitromethane - attacks some plastics, rubber, coatings and metals: aluminium, tin, zinc,etc, and their alloys, producing flammable hydrogen gas - Avoid strong acids, acid chlorides, acid anhydrides and chloroformates. - Avoid contact with copper, aluminium and their alloys. - Avoid reaction with oxidising agents ### SECTION 8 Exposure controls / personal protection #### Control parameters Occupational Exposure Limits (OEL) Storage incompatibility ### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |------------------------------|------------------|------------------|---------------|---------------|---------|---------------| | Australia Exposure Standards | Sodium Hydroxide | Sodium hydroxide | Not Available | Not Available | 2 mg/m3 | Not Available | ### **Emergency Limits** | Ingredient | TEEL-1 | TEEL-2 | TEEL-3 | |------------------|---------------|---------------|---------------| | Sodium Hydroxide | Not Available | Not Available | Not Available | | Ingredient | Original IDLH | Revised IDLH | |-----------------------------|---------------|---------------| | 1,2-benzisothiazoline-3-one | Not Available | Not Available | | Sodium Hydroxide | 10 mg/m3 | Not Available | | Distilled Water | Not Available | Not Available | ### Occupational Exposure Banding | Ingredient | Occupational Exposure Band Rating | Occupational Exposure Band Limit | | |-----------------------------|--|----------------------------------|--| | 1,2-benzisothiazoline-3-one | E | ≤ 0.01 mg/m³ | | | Notes: | Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a grant of exposure concentrations that are expected to protect worker health. | | | ### **Exposure controls** #### Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. ### Appropriate engineering controls Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. Local exhaust ventilation usually required ### Personal protection Eye and face protection #### Safety glasses with unperforated side shields may be used where continuous eve protection is desirable, as in laboratories; spectacles are not sufficient where complete eye protection is needed such as when handling bulk-quantities, where there is a danger of splashing, or if the material may be under pressure. ### Chemical goggles.whenever there is a danger of the material coming in contact with the eyes; goggles must be properly fitted. - Full face shield (20 cm, 8 in minimum) may be required for supplementary but never for primary protection of eyes; these afford face protection. - Alternatively a gas mask may replace splash goggles and face shields. - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. Nipacide BIT 20 Issue Date: **01/11/2019**Print Date: **14/03/2022** #### Skin protection See Hand protection below ► Elbow length PVC gloves When handling corrosive liquids, wear trousers or overalls outside of boots, to avoid spills entering boots. NOTE: Fig. The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. ▶ Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance Hands/feet protection and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. ▶ Butyl rubber gloves · Nitrile rubber gloves (Note: Nitric acid penetrates nitrile gloves in a few minutes.) Wear safety footwear See Other protection below **Body protection** Overalls. PVC Apron. Other protection PVC protective suit may be required if exposure severe. Eyewash unit. ▶ Ensure there is ready access to a safety shower. #### Recommended material(s) #### **GLOVE SELECTION INDEX** Glove selection is based on a modified presentation of the: "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection: Nipacide BIT 20 | Material | СРІ | |-------------------|-----| | BUTYL | A | | NEOPRENE | A | | NAT+NEOPR+NITRILE | С | | NATURAL RUBBER | С | | NATURAL+NEOPRENE | С | | NEOPRENE/NATURAL | С | | NITRILE | С | | NITRILE+PVC | С | | PE | С | | PE/EVAL/PE | С | | PVA | С | | PVC | С | | SARANEX-23 | С | | SARANEX-23 2-PLY | С | | TEFLON | С | | VITON | С | | VITON/CHLOROBUTYL | С | - * CPI Chemwatch Performance Index - A: Best Selection - B: Satisfactory; may degrade after 4 hours continuous immersion - C: Poor to Dangerous Choice for other than short term immersion **NOTE**: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - * Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. ### Respiratory protection - Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. - The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. - Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used ### **SECTION 9 Physical and chemical properties** ### Information on basic physical and chemical properties | inioniation on baolo physical | intermediation on sector physical and orionical proportion | | | | |-------------------------------|--|---|---------------|--| | Appearance | Clear amber liquid; mixes with water. | | | | | | | | | | | Physical state | Liquid | Relative density (Water = 1) | 1.19-1.23 | | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | | pH (as supplied) | >12 | Decomposition temperature | Not Available | | ### Nipacide BIT 20 Issue Date: **01/11/2019**Print Date: **14/03/2022** | | 1 | | | |--|----------------|--------------------------------------|----------------| | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | >100 | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | >102 | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Not Applicable | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | Not Available | Volatile
Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water | Miscible | pH as a solution (Not
Available%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | ### **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | ### **SECTION 11 Toxicological information** species. | Inhaled | The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. Inhaling corrosive bases may irritate the respiratory tract. Symptoms include cough, choking, pain and damage to the mucous membrane. Sudden inhalation of sodium hydroxide dust may produce fatal outcome such as spasm, inflammation of the throat and airway, burns, severe lung inflammation and fluid accumulated in the lungs These manifest as coughing, wheezing, shortness of breath, headache, nausea and vomiting. | |--------------|---| | Ingestion | Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. Ingestion of alkaline corrosives may produce burns around the mouth, ulcerations and swellings of the mucous membranes, profuse saliva production, with an inability to speak or swallow. Both the oesophagus and stomach may experience burning pain; vomiting and diarrhoea may follow. Animal testing showed that benzisothiazoline-3-one can cause hair standing up, dehydration, low body temperature and reduced activity. Taken by mouth, isothiazolinones have moderate to high toxicity. The major signs of toxicity are severe stomach irritation, lethargy, and inco-ordination. Ingestion of sodium hydroxide may result in severe pain, burns to the mouth, throat, stomach, nausea and vomiting, swelling of the throat and subsequent perforation of the gastro-intestinal tract and suffocation but a 1% solution (pH 13.4) of sodium hydroxide in water failed to cause any damage of the stomach or gullet in rabbits. | | Skin Contact | A 0.5% solution of 1,2-benzisothiazoline-3-one (BIT) is irritating to the skin. Even 0.05% can cause allergy, according to patch tests, with reddening of the skin. Provocation tests with BIT showed the material to be sensitizing. Of 20 metal workers with skin inflammation, four were shown to have been sensitized to BIT in cutting oils. Cases of contact eczema in workers producing polyacrylate emulsions for paints and wax polish, in which BIT was the preservative, have been described. Similar findings have been described in the paper-making industry, in the rubber industry, in the control laboratory of a chemical plant and among workers producing ceramic moulds where BIT was added to the mould oil. Solutions of isothiazolinones may be irritating or even damaging to the skin, depending on concentration. A concentration of over 0.1% can irritate, and over 0.5% can cause severe irritation. Sodium hydroxide causes burns which may take time to manifest and cause pain, thus care should be taken to avoid contamination of gloves and boots. A 5% aqueous solution of it produces tissue death on rabbit skin while 1% solution caused no effect on irrigated rabbit eye. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the ski prior to the use of the material and ensure that any external damage is suitably protected. The material can produce chemical burns following direct contact with the skin. | | Еуе | If applied to the eyes, this material causes severe eye damage. Direct eye contact with corrosive bases can cause pain and burns. There may be swelling, epithelium destruction, clouding of the cornea and inflammation of the iris. Mild cases often resolve; severe cases can be prolonged with complications such as persistent swelling, scarring, permanent cloudiness, bulging of the eye, cataracts, eyelids glued to the eyeball and blindness. Solutions containing isothiazolinones may damage the mucous membranes and cornea. Animal testing showed very low concentrations (under 0.1%) did not cause irritation, while higher levels (3-5.5%) produced severe irritation and damage to the eye. | | Chronic | Repeated or prolonged exposure to corrosives may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necros (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. Long-term exposure to respiratory irritants may result in airways disease, involving difficulty breathing and related whole-body problems. Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population. Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. In animal testing, 1,2-benzisothiazoline-3-one (BIT) did not cause toxicity to the embryo or birth defects. The material does not cause mutations are present in general relations and the property in the defects. | or an increase in cancer. Mild anaemia, reduction in food intake and changes in organ weights did occur in a long-term study. The isothiazolinones are known contact sensitisers. Sensitisation is more likely with the chlorinated species as opposed to the non-chlorinated Chemwatch: 8829-15 Page 8 of 12 Issue Date: 01/11/2019 Version No: 3.1 Nipacide BIT 20 Print Date: 14/03/2022 | | TOXICITY | IRRITATION | | |-----------------------------|---|---|--| | Nipacide BIT 20 | Not Available | Not Available | | | | TOXICITY | IRRITATION | | | 1,2-benzisothiazoline-3-one | dermal (rat) LD50: >2000 mg/kg ^[1] | Eye: adverse effect observed (irreversible damage) ^[1] | | | | Oral (Rat) LD50; 454 mg/kg ^[1] | Skin: no adverse effect observed (not irritating) $^{[1]}$ | | | | TOXICITY | IRRITATION | | | | Dermal (rabbit) LD50: 1350 mg/kg ^[2] | Eye (rabbit): 0.05 mg/24h SEVERE | | | | Oral (Rabbit) LD50; 325 mg/kg ^[1] | Eye (rabbit):1 mg/24h SEVERE | | | Sodium Hydroxide | | Eye (rabbit):1 mg/30s rinsed-SEVERE | | | | | Eye: adverse effect observed (irritating) ^[1] | | | | | Skin (rabbit): 500 mg/24h SEVERE | | | | | Skin: adverse effect observed (corrosive) ^[1] | | | - 1 | TOXICITY | IRRITATION | | | Distilled Water | Oral (Rat) LD50; >90000 mg/kg ^[2] | Not Available | | | Legend: | Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances | | | The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals
come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. In light of potential adverse effects, and to ensure a harmonised risk assessment and management, the EU regulatory framework for biocides has been established with the objective of ensuring a high level of protection of human and animal health and the environment. To this aim, it is required that risk assessment of biocidal products is carried out before they can be placed on the market. A central element in the risk assessment of the biocidal products are the utilization instructions that defines the dosage, application method and amount of applications and thus the exposure of humans and the environment to the biocidal substance. Humans may be exposed to biocidal products in different ways in both occupational and domestic settings. Many biocidal products are intended for industrial sectors or professional uses only, whereas other biocidal products are commonly available for private use by non-professional users. In addition, potential exposure of non-users of biocidal products (i.e. the general public) may occur indirectly via the environment, for example through drinking water, the food chain, as well as through atmospheric and residential exposure. Particular attention should be paid to the exposure of vulnerable sub-populations, such as the elderly, pregnant women, and children. Also pets and other domestic animals can be exposed indirectly following the application of biocidal products. Furthermore, exposure to biocides may vary in terms of route (inhalation, dermal contact, and ingestion) and pathway (food, drinking water, residential, occupational) of exposure, level, frequency and duration. ### 1,2-BENZISOTHIAZOLINE-3-ONE The predominant fate of the thiazole ring is oxidative ring scission catalysed by cytochrome P450 (CYP) and formation of the corresponding alpha-dicarbonyl metabolites and thioamide derivatives. The well-established toxicity associated with thioamides and thioureas has led to the speculation that thiazole toxicity is attributed to ring scission yielding the corresponding thioamide metabolite. Ring opening has also been observed in benzothiazoles. For instance, benzothiazole itself is converted to S-methylmercaptoaniline. Acute toxicity data show that 1,2-benzisothiazoline-3-one (BIT) is moderately toxic by the oral and dermal routes but that this chemical is a severe eye irritant. Irritation to the skin from acute data show only mild skin irritation, but repeated dermal application indicated a more significant skin irritation response. The neurotoxicity observed in the rat acute oral toxicity study (piloerection and upward curvature of the spine at 300 mg/kg and above; decreased activity, prostration, decreased abdominal muscle tone, reduced righting reflex, and decreased rate and depth of breathing at 900 mg/kg) and the acute dermal toxicity study (upward curvature of the spine was observed in increased incidence, but this was absent after day 5 post-dose at a dose of 2000 mg/kg) were felt to be at exposures in excess of those expected from the use pattern of this pesticide and that such effects would not be observed at estimated exposure doses. Subchronic oral toxicity studies showed systemic effects after repeated oral administration including decreased body weight, increased incidence of forestomach hyperplasia, and non-glandular stomach lesions in rats. In dogs, the effects occurred at lower doses than in rats, and included alterations in blood chemistry (decreased plasma albumin, total protein, and alanine aminotransferase) and increased absolute liver weight Developmental toxicity studies were conducted in rats with maternal effects including decreased body weight gain, decreased food consumption, and clinical toxicity signs (audible breathing, haircoat staining of the anogenital region, dry brown material around the nasal area) as well as increased mortality. Developmental effects consisted of increases in skeletal abnormalities (extra sites of ossification of skull bones, unossified sternebrae) but not external or visceral abnormalities. Reproductive toxicity: In a two- generation reproduction study, parental toxicity was observed at 500 ppm and was characterized by lesions in the stomach. ### SODIUM HYDROXIDE Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. The material may cause severe skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. Repeated exposures may produce severe ulceration. ## 1,2-BENZISOTHIAZOLINE-3-ONE & DISTILLED WATER No significant acute toxicological data identified in literature search. Version No: 3.1 Nipacide BIT 20 | Acute Toxicity | ✓ | Carcinogenicity | × | |-----------------------------------|----------|--------------------------|---| | Skin Irritation/Corrosion | ✓ | Reproductivity | × | | Serious Eye Damage/Irritation | ✓ | STOT - Single Exposure | × | | Respiratory or Skin sensitisation | ✓ | STOT - Repeated Exposure | x | | Mutagenicity | × | Aspiration Hazard | × | Legend: 💢 – Data either not available or does not fill the criteria for classification Issue Date: 01/11/2019 Print Date: 14/03/2022 – Data available to make classification ### **SECTION 12 Ecological information** #### **Toxicity** | | Endpoint | Test Duration (hr) | Species | Value | Source | |-----------------------------|---|--------------------|---------------|------------------|------------------| | Nipacide BIT 20 | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | LC50 | 96h | Fish | 0.067-0.29mg/L | 4 | | 1,2-benzisothiazoline-3-one | EC50 | 48h | Crustacea | 0.097mg/L | 4 | | | EC50(ECx) | 48h | Crustacea | 0.097mg/L | 4 | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | EC50(ECx) | 48h | Crustacea | 34.59-47.13mg/l | 4 | | Sodium Hydroxide | LC50 | 96h | Fish | 144-267mg/l | 4 | | | EC50 | 48h | Crustacea | 34.59-47.13mg/l | 4 | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | Legend: | Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan - Bioconcentration Data 8. Vendor Data | | | | | Very toxic to aquatic organisms. Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters. Wastes resulting from use of the product must be disposed of on site or at approved waste sites. for 1,2-benzisothiazoline-3-one (BIT): ### Environmental fate: Based on environmental fate data, BIT binds moderately with soil and may potentially move with the soil during rainfall events and reach surface waters. Although,BIT has been shown to be hydrolytically stable with a half life of > 30 days, it breaks down fairly quickly in aerobic soils. BIT shows moderate to strong binding to soils, with adsorption Kd values estimated to be between 1.24 and 9.56 However, it breaks down aerobically on the surface soils. Since it has a moderate binding potential to soils, it is not likely to migrate into the ground and there is low potential for ground water contamination. Furthermore, with a Kow value of 20 at 25 deg C, BIT is unlikely to bioaccumulate in aquatic organisms. **Ecotoxicity:** Based on acute toxicity information, 1,2-benzisothiazoline-3-one displays low to moderate toxicity to birds and mammals. It is moderately toxic to freshwater fish and invertebrates, slightly toxic to marine/estuarine fish, and highly toxic to marine/estuarine invertebrates. Fish LC50 (96 h): bluegill sunfish 2.7 - 5.1 ppm; rainbow trout 0.77 - 1.4 ppm - Toxic to fish. Environmental Fate: Isothiazolinones are antimicrobials used to control bacteria, fungi, and for wood preservation and antifouling agents. They are frequently used in personal care
products such as shampoos and other hair care products, as well as certain paint formulations. The most common isothiazolinone combinations are 5-chloro-2-methyl-4-isothiazolin-3-one, (CMI), and 2-methyl-4-isothiazolin-3-one, (MI). Aquatic Fate: 5-chloro-2-methyl-4-isothiazolin-3-one, (CMI), and 2-methyl-4-isothiazolin-3-one, (MI), undergo primary biological breakdown with half-lives of less than 24 hours in both oxygenated and low oxygen sediments with >55% breakdown occurring within 29 days. Ecotoxicity: The isothiazolinones are very toxic to marine organisms, (fish, Daphnia magna water fleas, and algae), and have low potential for accumulation in aquatic species. The proposed metabolites of MI and CMI are considered to have a low aquatic toxicity, based partially on data for the structurally related N-(n-octyl) malonamic acid. Prevent, by any means available, spillage from entering drains or water courses. DO NOT discharge into sewer or waterways. ### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |------------------|-------------------------|------------------| | Sodium Hydroxide | LOW | LOW | | Distilled Water | LOW | LOW | ### **Bioaccumulative potential** | Ingredient | Bioaccumulation | |------------------|------------------------| | Sodium Hydroxide | LOW (LogKOW = -3.8796) | ### Mobility in soil | Ingredient | Mobility | |------------------|------------------| | Sodium Hydroxide | LOW (KOC = 14.3) | Page 10 of 12 Issue Date: 01/11/2019 Version No: 3.1 Print Date: 14/03/2022 Nipacide BIT 20 ### **SECTION 13 Disposal considerations** ### Waste treatment methods - ▶ Containers may still present a chemical hazard/ danger when empty. - ▶ Return to supplier for reuse/ recycling if possible. #### Otherwise: - If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. - ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - Reduction - ► Reuse - Recycling - Disposal (if all else fails) ### Product / Packaging disposal This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. - DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - ▶ Where in doubt contact the responsible authority. - Recycle wherever possible. - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - Treat and neutralise at an approved treatment plant. - Treatment should involve: Neutralisation with suitable dilute acid followed by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material). - ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. ### **SECTION 14 Transport information** ### Labels Required ### **Marine Pollutant** 2X HAZCHEM ### Land transport (ADG) | UN number | 1760 | | | |------------------------------|--|--|--| | UN proper shipping name | CORROSIVE LIQUID, N.O.S. (contains Sodium Hydroxide) | | | | Transport hazard class(es) | Class 8 Subrisk Not Applicable | | | | Packing group | III | | | | Environmental hazard | Environmentally hazardous | | | | Special precautions for user | Special provisions 223 274 Limited quantity 5 L | | | ### Air transport (ICAO-IATA / DGR) | UN number | 1760 | | | | |------------------------------|---|--|----------------|--| | UN proper shipping name | Corrosive liquid, n.o.s. * | Corrosive liquid, n.o.s. * (contains Sodium Hydroxide) | | | | Transport hazard class(es) | ICAO/IATA Class ICAO / IATA Subrisk ERG Code | 8 Not Applicable 8L | | | | Packing group | III | | | | | Environmental hazard | Environmentally hazardo | ous | | | | Special precautions for user | Special provisions Cargo Only Packing Instructions | | A3 A803
856 | | Nipacide BIT 20 Issue Date: **01/11/2019**Print Date: **14/03/2022** | Cargo Only Maximum Qty / Pack | 60 L | |---|------| | Passenger and Cargo Packing Instructions | 852 | | Passenger and Cargo Maximum Qty / Pack | 5 L | | Passenger and Cargo Limited Quantity Packing Instructions | Y841 | | Passenger and Cargo Limited Maximum Qty / Pack | 1 L | ### Sea transport (IMDG-Code / GGVSee) | UN number | 1760 | | | |------------------------------|--|---------------------------------------|--| | UN proper shipping name | CORROSIVE LIQUID |), N.O.S. (contains Sodium Hydroxide) | | | Transport hazard class(es) | IMDG Class 8 IMDG Subrisk 1 | 3 Not Applicable | | | Packing group | | | | | Environmental hazard | Marine Pollutant | | | | Special precautions for user | EMS Number Special provisions Limited Quantities | F-A, S-B
223 274
5 L | | ### Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable ### Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |-----------------------------|---------------| | 1,2-benzisothiazoline-3-one | Not Available | | Sodium Hydroxide | Not Available | | Distilled Water | Not Available | ### Transport in bulk in accordance with the ICG Code | Product name | Ship Type | |-----------------------------|---------------| | 1,2-benzisothiazoline-3-one | Not Available | | Sodium Hydroxide | Not Available | | Distilled Water | Not Available | ### **SECTION 15 Regulatory information** ### Safety, health and environmental regulations / legislation specific for the substance or mixture ### 1,2-benzisothiazoline-3-one is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC) ### Sodium Hydroxide is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 $\,$ Australian Inventory of Industrial Chemicals (AIIC) ### Distilled Water is found on the following regulatory lists Australian Inventory of Industrial Chemicals (AIIC) ### **National Inventory Status** | National inventory Status | | |--|---| | National Inventory | Status | | Australia - AIIC / Australia
Non-Industrial Use | Yes | | Canada - DSL | Yes | | Canada - NDSL | No (1,2-benzisothiazoline-3-one; Sodium Hydroxide; Distilled Water) | | China - IECSC | Yes | | Europe - EINEC / ELINCS / NLP | Yes | | Japan - ENCS | Yes | | Korea - KECI | Yes | | New Zealand - NZIoC | Yes | | Philippines - PICCS | Yes | | USA - TSCA | Yes | | Taiwan - TCSI | Yes | | Mexico - INSQ | Yes | | Vietnam - NCI | Yes | ### Nipacide BIT 20 Issue Date: 01/11/2019 Print Date: 14/03/2022 | National Inventory | Status | |--------------------|--| | Russia - FBEPH | Yes | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. | #### **SECTION 16 Other information** | Revision Date | 01/11/2019 | |---------------|------------| | Initial Date | 17/10/2007 | #### **SDS Version Summary** | Version | Date of Update | Sections Updated | |---------|----------------|--| | 3.1 | 01/11/2019 | One-off system update. NOTE: This may or may not change the GHS classification | #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately
Dangerous to Life or Health Concentrations ES: Exposure Standard OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals DSL: Domestic Substances List NDSL: Non-Domestic Substances List IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances NLP: No-Longer Polymers ENCS: Existing and New Chemical Substances Inventory KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.