SODIUM CARBOXYMETHYLCELLULOSE # ALPHA CHEMICALS PTY LTD Chemwatch: 21986 Version No: 5.1.1.1 Safety Data Sheet according to WHS and ADG requirements Chemwatch Hazard Alert Code: Issue Date: **15/02/2020**Print Date: **06/04/2020**S.GHS.AUS.EN # SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING # **Product Identifier** | Product name | SODIUM CARBOXYMETHYLCELLULOSE | | |--|-------------------------------|--| | Chemical Name | | | | (C30-H43-O26-Na3)n; carboxymethyl cellulose; carboxymethyl cellulose, sodium salt; cellulose, carboxymethyl ether, sodium salt; cell sodium cellulose glycolate; cellulose glycolic acid, sodium salt; Cellogen; Cellpro; Cellufix FF 100; Cellugel; Collowel; Copagel; CMC; C.N Cellulose; Daicel; sodium CMC; Polycell; Cellolax; Aquaplast; Tylose; Blanose; Unisol; Carbose 1M; Cehol; Carmethose; Vegetab 466; Cellofas; Finnfix; CCRIS 3653; Cellofas B; Cellofas B5; Cellofas B50; Cellofas B6; Cellofas C; Cellogel C; Cellogen 3H; Cellogen WS-C; Cellufresh; Cellulose carboxymethyl ether sodium salt; Cellulose sodium glycolate; Cellulose, carboxymethyl ether, so low-substituted; Celluvisc; CM-Cellulose sodium salt; CMC 2; CMC 3M5T; CMC 41A; CMC 4H1; GPR; Finnfix Purified Range; Celloge 6A, 7A,WS-A,HP-4H, HSSH | | | | Chemical formula | (C30-H43-O26-Na3)n | | | Other means of identification | Not Available | | | CAS number | 9004-32-4 | | # Relevant identified uses of the substance or mixture and uses advised against Synthetic polymer. Modified cellulose polymers are used in a wide variety of cosmetics as thickeners, suspending agents, film formers, stabilisers, emulsifiers, emollients, binders, or water-retention agents Carboxymethyl cellulose (CMC) or cellulose gum[1] is a cellulose derivative with carboxymethyl groups (-CH2-COOH) bound to some of the hydroxyl groups of the glucopyranose monomers that make up the cellulose backbone. It is often used as its sodium salt, sodium carboxymethyl cellulose. # Relevant identified uses CMC is used in food under the E number E466 or E469 (when it is enzymatically hydrolyzed) as a viscosity modifier or thickener, and to stabilize emulsions in various products including ice cream. It is also a constituent of many non-food products, such as toothpaste, laxatives, diet pills, water-based paints, detergents, textile sizing, reusable heat packs, and various paper products. It is used primarily because it has high viscosity, is nontoxic, and is generally considered to be hypoallergenic as the major source fiber is either softwood pulp or cotton linter.CMC is used extensively in gluten free and reduced fat food products. CMC powder is widely used in the ice cream industry, to make ice creams without churning or extreme low temperatures, thereby eliminating the need for the conventional churners or salt ice mixes. CMC is used in preparing bakery products such as bread and cake aa an emulsifier in high quality biscuits. # Details of the supplier of the safety data sheet | Registered company name | ALPHA CHEMICALS PTY LTD | | |-------------------------|---|--| | Address | ALLEN PLACE WETHERILL PARK NSW 2099 Australia | | | Telephone | (0)2 9982 4622 | | | Fax | lot Available | | | Website | ~ | | | Email | shane@alphachem.com.au | | # **Emergency telephone number** | Association / Organisation | LPHA CHEMICALS PTY LTD | | |-----------------------------------|------------------------|--| | Emergency telephone numbers | 61 (0)418 237 771 | | | Other emergency telephone numbers | Not Available | | # **SECTION 2 HAZARDS IDENTIFICATION** # Classification of the substance or mixture NON-HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. CHEMWATCH HAZARD RATINGS Chemwatch: 21986 Version No: 5.1.1.1 <-#PAGE_DIV> # SODIUM CARBOXYMETHYLCELLULOSE Issue Date: **15/02/2020**Print Date: **06/04/2020** | | Min | Max | | |--------------|-----|-----|-------------------------| | Flammability | 1 | | | | Toxicity | 1 | | 0 = Minimum | | Body Contact | 0 | | 1 = Low
2 = Moderate | | Reactivity | 1 | | 3 = High | | Chronic | 0 | | 4 = Extreme | | Poisons Schedule | Not Applicable | |--------------------|----------------| | Classification [1] | Not Applicable | | | | # Label elements | | Label elements | | | |------------------------------------|----------------|----------------|--| | Hazard pictogram(s) Not Applicable | | Not Applicable | | | | SIGNAL WORD | NOT APPLICABLE | | | | | NOTAFFLICABLE | | # Hazard statement(s) Not Applicable # Precautionary statement(s) Prevention Not Applicable # Precautionary statement(s) Response Not Applicable # Precautionary statement(s) Storage Not Applicable # Precautionary statement(s) Disposal Not Applicable # **SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS** # Substances | CAS No | %[weight] | Name | |-----------|-----------|-------------------------------| | 9004-32-4 | >99 | sodium carboxymethylcellulose | # Mixtures See section above for composition of Substances # **SECTION 4 FIRST AID MEASURES** # Description of first aid measures | Eye Contact | If this product comes in contact with the eyes: • Wash out immediately with fresh running water. • Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. • Seek medical attention without delay; if pain persists or recurs seek medical attention. • Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | |--------------|---| | Skin Contact | If skin or hair contact occurs: Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | Inhalation | If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. | | Ingestion | If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. | # Indication of any immediate medical attention and special treatment needed Treat symptomatically. # **SECTION 5 FIREFIGHTING MEASURES** # Extinguishing media - ► Foam. - ► Dry chemical powder. - ► BCF (where regulations permit). - ► Carbon dioxide. - ► Water spray or fog Large fires only. Chemwatch: 21986 <-#PAGE DIV> # SODIUM CARBOXYMETHYLCELLULOSE Issue Date: 15/02/2020 Print Date: 06/04/2020 # Special hazards arising from the substrate or mixture Version No: 5.1.1.1 Fire Incompatibility ▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result Advice for firefighters Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. ▶ Prevent, by any means available, spillage from entering drains or water courses. Use water delivered as a fine spray to control fire and cool adjacent area. Fire Fighting ▶ DO NOT approach containers suspected to be hot. ▶ Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. ▶ Equipment should be thoroughly decontaminated after use. ► Combustible solid which burns but propagates flame with difficulty; it is estimated that most organic dusts are combustible (circa 70%) according to the circumstances under which the combustion process occurs, such materials may cause fires and / or dust explosions. Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions). Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust (420 micron or less) may burn rapidly and fiercely if ignited - particles exceeding this limit will generally not form flammable dust clouds; once initiated, however, larger particles up to 1400 microns diameter will contribute to the propagation of an In the same way as gases and vapours, dusts in the form of a cloud are only ignitable over a range of concentrations; in principle, the concepts of lower explosive limit (LEL) and upper explosive limit (UEL) are applicable to dust clouds but only the LEL is of practical use; - this Fire/Explosion Hazard is because of the inherent difficulty of achieving homogeneous dust clouds at high temperatures (for dusts the LEL is often called the "Minimum Explosible Concentration", MEC). ▶ When processed with flammable liquids/vapors/mists,ignitable (hybrid) mixtures may be formed with combustible dusts. Ignitable mixtures will increase the rate of explosion pressure rise and the Minimum Ignition Energy (the minimum amount of energy required to ignite dust clouds - MIE) will be lower than the pure dust in air mixture. The Lower Explosive Limit (LEL) of the vapour/dust mixture will be lower than the # Combustion products include: carbon dioxide (CO2) carbon monoxide (CO) metal oxides other pyrolysis products typical of burning organic material. individual LELs for the vapors/mists or dusts. May emit poisonous fumes **HAZCHEM** Not Applicable # **SECTION 6 ACCIDENTAL RELEASE MEASURES** # Personal precautions, protective equipment and emergency procedures See section 8 # **Environmental precautions** See section 12 # Methods and material for containment and cleaning up | Minor Spills | Remove all ignition sources. Clean up all spills immediately. Avoid contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Use dry clean up procedures and avoid generating dust. Place in a suitable, labelled container for waste disposal. | |--------------|---| | Major Spills | Moderate hazard. CAUTION: Advise personnel in area. Alert Emergency Services and tell them location and nature of hazard. Control personal contact by wearing protective clothing. Prevent, by any means available, spillage from entering drains or water courses. Recover product wherever possible. If DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. | Personal Protective Equipment advice is contained in Section 8 of the SDS. # **SECTION 7 HANDLING AND STORAGE** # Precautions for safe handling - ▶ Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs. - ▶ Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - ▶ DO NOT enter confined spaces until atmosphere has been checked. - ► DO NOT allow material to contact humans, exposed food or food utensils. Avoid contact with incompatible materials. # Safe handling - When handling, DO NOT eat, drink or smoke. - ▶ Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions) - ▶ Minimise airborne dust and eliminate all ignition sources. Keep away from heat, hot surfaces, sparks, and flame. - Establish good housekeeping practices. - ▶ Remove dust accumulations on a regular basis by vacuuming or gentle sweeping to avoid creating dust clouds. Chemwatch: 21986 <-#PAGE_DIV> Version No: **5.1.1.1** # SODIUM CARBOXYMETHYLCELLULOSE Issue Date: **15/02/2020**Print Date: **06/04/2020** Use continuous suction at points of dust generation to capture and minimise the accumulation of dusts. Particular attention should be given to overhead and hidden horizontal surfaces to minimise the probability of a "secondary" explosion. According to NFPA Standard 654, dust layers 1/32 in.(0.8 mm) thick can be sufficient to warrant immediate cleaning of the area. - ▶ Do not use air hoses for cleaning. - Store in original containers. - Keep containers securely sealed. - Store in a cool, dry area protected from environmental extremes. - ▶ Store away from incompatible materials and foodstuff containers. - ▶ Protect containers against physical damage and check regularly for leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. ## For major quantities - Consider storage in bunded areas ensure storage areas are isolated from sources of community water (including stormwater, ground water, lakes and streams). - Ensure that accidental discharge to air or water is the subject of a contingency disaster management plan; this may require consultation with local authorities. # Conditions for safe storage, including any incompatibilities # Suitable container Other information - ▶ Glass container is suitable for laboratory quantities - ▶ Polyethylene or polypropylene container - ► Check all containers are clearly labelled and free from leaks. # Storage incompatibility Dilute solutions of all sugars are subject to fermentation, either by yeast or by other microorganisms or enzymes derived from these, producing gases which can pressurise and burst sealed containers. Some microorganisms will produce hydrogen or methane, adding a fire and explosion hazard. Cellulose and its derivatives may react vigorously with calcium oxide, bleaching powder, perchlorates, perchloric acid, sodium chlorate, fluorine, nitric acid, sodium nitrate and sodium nitrite. May be incompatible with aminacrine hydrochloride, chlorocresol, mercuric chloride, phenol, resorcinol, tannic acid and silver nitrate. ► Avoid reaction with oxidising agents # **SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION** ## Control parameters OCCUPATIONAL EXPOSURE LIMITS (OEL) INGREDIENT DATA Not Available # **EMERGENCY LIMITS** | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |----------------------------------|---------------|---------------|---------------|---------------| | SODIUM
CARBOXYMETHYLCELLULOSE | Not Available | Not Available | Not Available | Not Available | | Ingredient Original IDLH | | | Revised IDLH | | | sodium carboxymethylcellulose | Not Available | | Not Available | | # Exposure controls # Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: # Process controls which involve changing the way a job activity or process is done to reduce the risk. # Appropriate engineering controls Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. • Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction. # Personal protection - ► Safety glasses with side shields - ▶ Chemical goggles # Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] Eye and face protection # Skin protection See Hand protection below # The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. # Hands/feet protection The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive # SODIUM CARBOXYMETHYLCELLULOSE Issue Date: **15/02/2020**Print Date: **06/04/2020** | particles are not present. • polychloroprene. • nitrile rubber. • butyl rubber. • fluorocaoutchouc. • polyvinyl chloride. Gloves should be examined for wear and/ or degradation constantly. | | |--|---| | Body protection | See Other protection below | | Other protection | Overalls. P.V.C. apron. Barrier cream. Skin cleansing cream. Eye wash unit. | # Respiratory protection Particulate. (AS/NZS 1716 & 1715, EN 143:2000 & 149:001, ANSI Z88 or national equivalent) | Required Minimum Protection Factor | Half-Face Respirator | Full-Face Respirator | Powered Air Respirator | |------------------------------------|----------------------|----------------------|------------------------| | up to 10 x ES | P1
Air-line* | - | PAPR-P1 | | up to 50 x ES | Air-line** | P2 | PAPR-P2 | | up to 100 x ES | - | P3 | - | | | | Air-line* | - | | 100+ x ES | - | Air-line** | PAPR-P3 | ^{* -} Negative pressure demand ** - Continuous flow A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - ▶ Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures. - The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option). - Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended. - Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program. - ▶ Use approved positive flow mask if significant quantities of dust becomes airborne. - ► Try to avoid creating dust conditions. # **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** # Information on basic physical and chemical properties Appearance Mo White to off-white, odourless, hygroscopic powder or granules. Solubility in water depends on degree of substitution. Very slowly degraded biochemically. Modified cellulose polymers formed by the reaction with the free hydroxyl groups in cellulose. The number of hydroxyl groups reacting, as well as the the nature of the substituent, largely determine the physical properties, particularly solubility, of the product. Family of products which vary in their physical properties as a result of variations in production. Data presented here is for typical family member. | Physical state | Divided Solid | Relative density (Water = 1) | 1.59 | |--|-----------------|---|----------------| | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | 370~ | | pH (as supplied) | Not Applicable | Decomposition temperature | Not available. | | Melting point / freezing point (°C) | Not available. | Viscosity (cSt) | Not Applicable | | Initial boiling point and boiling range (°C) | Not Applicable | Molecular weight (g/mol) | 21,000-500,000 | | Flash point (°C) | Not Available | Taste | Not Available | | Evaporation rate | Not Applicable | Explosive properties | Not Available | | Flammability | Not Available | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Applicable | | Lower Explosive Limit (%) | Not Available | Volatile Component (%vol) | 8 | | Vapour pressure (kPa) | Not Applicable | Gas group | Not Available | | Solubility in water | Partly miscible | pH as a solution (1%) | 6.5-8.0 | | Vapour density (Air = 1) | Not Applicable | VOC g/L | Not Applicable | # **SECTION 10 STABILITY AND REACTIVITY** Reactivity See section 7 # SODIUM CARBOXYMETHYLCELLULOSE Issue Date: 15/02/2020 Print Date: 06/04/2020 | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | |------------------------------------|--| | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | # **SECTION 11 TOXICOLOGICAL INFORMATION** | Information on toxicological ef | fects | | | |---------------------------------|---|---------------|--| | Inhaled | The material is not thought to produce respiratory irritation (as classified by EC Directives using animal models). Nevertheless inhalation of dusts, or furnes, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress. Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual. Cellulose, given via the windpipe, caused fibrosis in the alveoli and airways, with injuries of the lung cells. Some health effects associated with wood, cotton, flax, jute and hemp particles or fibres are not attributable to cellulose content but to other substances and/or impurities. Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled. If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures. | | | | Ingestion | Accidental ingestion of the material may be damaging to the health of the individual. Large doses of cellulose may be administered orally as non-nutritive bulk, with doses of up to 30 g/day tolerated as bulk laxative while extremely large oral doses may produce disturbances to the gut. High molecular weight material; on single acute exposure would be expected to pass through gastrointestinal tract with little change / absorption. Occasionally accumulation of the solid material within the alimentary tract may result in formation of a bezoar (concretion), producing discomfort. Bulk laxatives can cause temporary bloating and blockage of the oesophagus and/or intestine. As they shorten the time of digestion, the absorption of other drugs will be affected. Polysaccharides are not easily absorbed from the digestive tract, but may produce a laxative effect. Larger doses may produce intestinal or stomach blockage. | | | | Skin Contact | The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. | | | | Eye | Although the material is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may cause transient discomfort characterised by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. | | | | Chronic | Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. Inhalation studies using animals have shown that cellulose fibres can cause lung scarring, and humans exposed to cellulose at work are more likely to develop asthma and obstructive lung disease. The substance may also induce the production of free radicals in human white blood cells. < Studies indicate that diets containing large amounts of non-absorbable polysaccharides, such as cellulose, might decrease absorption of calcium, magnesium, zinc and phosphorus. This material contains a substantial amount of polymer considered to be of low concern. These are classified under having MWs of between 1000 to 10000 with less than 25% of molecules with MWs under 1000 and less than 10% under 500; or having a molecular weight average of over 10000. Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis, caused by particles less than 0.5 micron penetrating and remaining in the lung. | | | | | TOXICITY | IRRITATION | | | | Dermal (rabbit) LD50: >2000 mg/kg ^[2] | Not Available | | # sodium carboxymethylcellulose | TOXICITY | IRRITATION | |--|---------------| | Dermal (rabbit) LD50: >2000 mg/kg ^[2] | Not Available | | Inhalation (rat) LC50: >5.8 mg/l/4H ^[2] | | | Oral (rat) LD50: 27000 mg/kg ^[2] | | # Legend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances # SODIUM CARBOXYMETHYLCELLULOSE Neoplastic by RTECS criteria While thought to be uncommon, case reports of severe reactions to carboxymethylcellulose exist. In one such instance, a woman was known to experience anaphylaxis following exposure. Skin testing is believed to be a useful diagnostic tool for this purpose. Effects on inflammation, microbiota-related metabolic syndrome, and colitis are a subject of research Carboxymethyl cellulose has been found to cause inflammation of the gut, altering microbiota, and was found to be a triggering factor of inflammatory bowel diseases such as ulcerative colitis and Crohn's disease | Acute Toxicity | X | Carcinogenicity | X | |-----------------------------------|---|--------------------------|---| | Skin Irritation/Corrosion | × | Reproductivity | × | | Serious Eye Damage/Irritation | × | STOT - Single Exposure | × | | Respiratory or Skin sensitisation | × | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | × | # SODIUM CARBOXYMETHYLCELLULOSE Issue Date: **15/02/2020**Print Date: **06/04/2020** Legena: - Data either not available or does not till the criteria for classification – Data available to make classification # **SECTION 12 ECOLOGICAL INFORMATION** # **Toxicity** | sodium
carboxymethylcellulose | ENDPOINT
LC50 | TEST DURATION (HR) 96 | SPECIES
Fish | VALUE >20000mg/L | SOURCE 4 | |----------------------------------|------------------|---|-----------------|-------------------------|----------| | Legend: | V3.12 (QSAR) - | Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data | | | | Non-ionic polymers with MWs > 1,000 that do not contain reactive functional groups and are comprised of minimal low MW oligomers are estimated to display no effects at saturation (NES). These polymers display NES because the amount dissolved in water is not anticipated to reach a concentration at which adverse effects may be expressed. Guidance for the assessment of aquatic toxicity hazard results in a Low hazard designation for those materials that display NES. For high molecular weight synthetic polymers: (according to the Sustainable Futures (SF) program (U.S. EPA 2005b; U.S. EPA 2012c) polymer assessment guidance.) High MW polymers are expected: - ·to have low vapour pressure and are not expected to undergo volatilization . - · to adsorb strongly to soil and sediment - ·to be non-biodegradable (not anticipated to be assimilated by microorganisms.- therefore, biodegradation is not expected to be an important removal process. However many exceptions exist High MW polymers are not expected to undergo removal by other degradative processes under environmental conditions Cellulosic products, including cellulose ethers, generally have a low biodegradation rate and are generally of low toxicity to fish. Sugar-based compounds (saccharides), including polysaccharides are generally easily decomposed by biodegradation. Not all polysaccharides decompose with equal rapidity, and polysaccharides are also synthesised by microorganisms during, for example, the compost maturation phases. Water-insoluble species such as cellulose take longer to decompose and those with a significant degree of branching also take longer. DO NOT discharge into sewer or waterways # Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |------------|---------------------------------------|---------------------------------------| | | No Data available for all ingredients | No Data available for all ingredients | # **Bioaccumulative potential** | Ingredient | Bioaccumulation | |------------|---------------------------------------| | | No Data available for all ingredients | # Mobility in soil | Ingredient | Mobility | |------------|---------------------------------------| | | No Data available for all ingredients | # **SECTION 13 DISPOSAL CONSIDERATIONS** # Waste treatment methods Product / Packaging disposal Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - ► Reduction - ► Reuse - ► Recycling - ► Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. In most instances the supplier of the material should be consulted. - DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. # **SECTION 14 TRANSPORT INFORMATION** # Labels Required | Marine Pollutant | NO | |------------------|----------------| | HAZCHEM | Not Applicable | Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable # SODIUM CARBOXYMETHYLCELLULOSE Issue Date: 15/02/2020 Print Date: 06/04/2020 # **SECTION 15 REGULATORY INFORMATION** Safety, health and environmental regulations / legislation specific for the substance or mixture # SODIUM CARBOXYMETHYLCELLULOSE IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Inventory of Chemical Substances (AICS) # **National Inventory Status** | National inventory Status | | |-------------------------------|---| | National Inventory | Status | | Australia - AICS | Yes | | Canada - DSL | Yes | | Canada - NDSL | No (sodium carboxymethylcellulose) | | China - IECSC | Yes | | Europe - EINEC / ELINCS / NLP | No (sodium carboxymethylcellulose) | | Japan - ENCS | Yes | | Korea - KECI | Yes | | New Zealand - NZIoC | Yes | | Philippines - PICCS | Yes | | USA - TSCA | Yes | | Taiwan - TCSI | Yes | | Mexico - INSQ | Yes | | Vietnam - NCI | Yes | | Russia - ARIPS | Yes | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | # **SECTION 16 OTHER INFORMATION** | Revision Date | 15/02/2020 | |---------------|------------| | Initial Date | 28/08/2006 | # **SDS Version Summary** | Version | Issue Date | Sections Updated | |---------|------------|---| | 4.1.1.1 | 13/11/2017 | Acute Health (inhaled), Acute Health (skin), Acute Health (swallowed), Appearance, Chronic Health, Classification, Disposal, Environmental, Exposure Standard, Fire Fighter (fire/explosion hazard), First Aid (eye), First Aid (inhaled), First Aid (swallowed), Handling Procedure, Instability Condition, Personal Protection (other), Physical Properties, Spills (major), Spills (minor), Storage (storage incompatibility), Storage (suitable container), Supplier Information, Synonyms, Use | | 5.1.1.1 | 15/02/2020 | Appearance, CAS Number, Environmental, Synonyms, Toxicity and Irritation (Toxicity Figure), Toxicity and Irritation (Other), Use | # Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. # **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.