MAGNESIUM OXIDE ALPHA CHEMICALS PTY LTD Chemwatch Hazard Alert Code: 2 Issue Date: **27/04/2018** Print Date: **10/05/2021** S.GHS.AUS.EN ALPHA CHEMICALS PTY LT Chemwatch: 10217 Version No: **8.1.4.1**Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements #### SECTION 1 Identification of the substance / mixture and of the company / undertaking | Product Identifier | | |-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Product name | MAGNESIUM OXIDE | | Chemical Name | magnesium oxide | | Synonyms | MgO; magnesia; magnesia alba; calcined brucite magnesia; calcined magnesite (CAS RN: 83897-85-2); sea-water magnesia; magnesia dead burnt dead-burned; magnesite burnt deadburned refractory; Lite magnesia; Akro-mag Magox OP Animag Marmag Oxymag Periclase Granmag Magcal; Magchem 100 Maglite D Magox 85 90 95 98; Amtrade Starmag 150 (Codes: 322255 & 322257) 20 (Code: 336381); Merck 10150 MC-50M Dead Sea Periclase SA-140; Fernz Maglite DE; magnesium oxide RA 150; Industrial Dead Burnt Magnesite Fused; magnesium oxide, light, (& Dense) UNILAB; magnesium oxide AnalaR; Magalite A, D, DE, K, S, Y & Marmag | | Chemical formula | MgO | | Other means of identification | Not Available | #### Relevant identified uses of the substance or mixture and uses advised against 1309-48-4. ## Relevant identified uses Component of refractory crucibles, fire bricks, insulation, rubber compounds, plastics, petroleum products, food and feed additives, pulp and paper manufacture, magnesia cements and boiler scale compounds. Manufacture of magnesium metal, alloys and magnesium salts. Laboratory reagent. Reflector in optical instruments; white colour standard. One of the raw materials for making Portland cement in dry process plants. If too much MgO is added, the cement may become expansive. MgO is a relatively poor desiccant, but because it neutralizes sulfur oxide acids created by oxidation of Kraft-processed papers, it is used by many libraries for preserving books. In medicine, magnesium oxide is used for relief of heartburn and sour stomach, as an antacid, magnesium supplement, and as a short-term laxative. It is also used to improve symptoms of indigestion. #### Details of the supplier of the safety data sheet CAS number | Registered company name | ALPHA CHEMICALS PTY LTD | |-------------------------|-------------------------------------------------| | Address | 4 ALLEN PLACE WETHERILL PARK NSW 2099 Australia | | Telephone | 61 (0)2 9982 4622 | | Fax | Not Available | | Website | ~ | | Email | shane@alphachem.com.au | #### **Emergency telephone number** | Association / Organisation | ALPHA CHEMICALS PTY LTD | |-----------------------------------|-------------------------| | Emergency telephone numbers | 61 (0)418 237 771 | | Other emergency telephone numbers | Not Available | # **SECTION 2 Hazards identification** #### Classification of the substance or mixture # HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. ## ChemWatch Hazard Ratings | | • | | | |--------------|-----|-----|--------------| | | Min | Max | | | Flammability | 0 | | | | Toxicity | 1 | | 0 = Minimum | | Body Contact | 2 | - 1 | 1 = Low | | Reactivity | 0 | | 2 = Moderate | | Chronic | 2 | | 3 = High | | Poisons Schedule | Not Applicable | |-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Classification ^[1] | Skin Corrosion/Irritation Category 2, Skin Sensitizer Category 1, Eye Irritation Category 2A, Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation), Germ cell mutagenicity Category 2 | Issue Date: 27/04/2018 Print Date: 10/05/2021 Legend: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI #### Label elements #### Hazard pictogram(s) | Signal word | w | |--------------|---| | Olgilai Wola | | #### Hazard statement(s) | H315 | Causes skin irritation. | |------|---------------------------------------| | H317 | May cause an allergic skin reaction. | | H319 | Causes serious eye irritation. | | H335 | May cause respiratory irritation. | | H341 | Suspected of causing genetic defects. | #### Precautionary statement(s) Prevention | P201 | Obtain special instructions before use. | |------|-----------------------------------------------------------------------------------------------| | P271 | Use only outdoors or in a well-ventilated area. | | P280 | Wear protective gloves/protective clothing/eye protection/face protection/hearing protection. | | P261 | Avoid breathing dust/fumes. | | P272 | Contaminated work clothing should not be allowed out of the workplace. | ## Precautionary statement(s) Response | P308+P313 | IF exposed or concerned: Get medical advice/ attention. | |----------------|----------------------------------------------------------------------------------------------------------------------------------| | P302+P352 | IF ON SKIN: Wash with plenty of water. | | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | P312 | Call a POISON CENTER/doctor/physician/first aider/if you feel unwell. | | P333+P313 | If skin irritation or rash occurs: Get medical advice/attention. | | P337+P313 | If eye irritation persists: Get medical advice/attention. | | P362+P364 | Take off contaminated clothing and wash it before reuse. | | P304+P340 | IF INHALED: Remove person to fresh air and keep comfortable for breathing. | # Precautionary statement(s) Storage | | - | |-----------|------------------------------------------------------------------| | P405 | Store locked up. | | P403+P233 | Store in a well-ventilated place. Keep container tightly closed. | #### Precautionary statement(s) Disposal P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. # **SECTION 3 Composition / information on ingredients** # Substances | CAS No | %[weight] | Name | |------------|-----------|-----------------| | 1309-48-4. | >=96 | magnesium oxide | Legend: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L; * EU IOELVs available #### Mixtures See section above for composition of Substances # **SECTION 4 First aid measures** #### Description of first aid measures | Eye Contact | If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. | |-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | Seek medical attention without delay: if pain persists or recurs seek medical attention. | Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. If skin contact occurs: If mediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. # Continued... Issue Date: **27/04/2018**Print Date: **10/05/2021** | Inhalation | If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. | |------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Ingestion | If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. | # Indication of any immediate medical attention and special treatment needed Copper, magnesium, aluminium, antimony, iron, manganese, nickel, zinc (and their compounds) in welding, brazing, galvanising or smelting operations all give rise to thermally produced particulates of smaller dimension than may be produced if the metals are divided mechanically. Where insufficient ventilation or respiratory protection is available these particulates may produce "metal fume fever" in workers from an acute or long term exposure. - P Onset occurs in 4-6 hours generally on the evening following exposure. Tolerance develops in workers but may be lost over the weekend. (Monday Morning Fever) - Pulmonary function tests may indicate reduced lung volumes, small airway obstruction and decreased carbon monoxide diffusing capacity but these abnormalities resolve after several months. - ▶ Although mildly elevated urinary levels of heavy metal may occur they do not correlate with clinical effects. - ▶ The general approach to treatment is recognition of the disease, supportive care and prevention of exposure. - Scriously symptomatic patients should receive chest x-rays, have arterial blood gases determined and be observed for the development of tracheobronchitis and pulmonary edema. #### [Ellenhorn and Barceloux: Medical Toxicology] Magnesium is present in the blood, as a normal constituent, at concentrations between 1.6 to 2.2 meq/L. Some 30% is plasma bound. At serum magnesium levels of 3-4 meq/L, signs of CNS depression, loss of reflexes, muscular tone and power, and bradycardia occur. Cardiac arrest (sometimes fatal) and/or respiratory paralysis can occur at plasma levels of 10-15 meq/L. For acute or short term repeated exposures to magnesium: - ▶ Symptomatic hypermagnesaemia appears rarely in the absence of intestinal or renal disease. - Elevated magnesium levels may cause hypocalcaemia because of decreased parathyroid hormone activity and decreased end-organ responsiveness. - Patients with severe hypermagnesemia may develop sudden respiratory arrest and must be watched closely for apnoea. - ▶ Use fluids, then vasopressors for hypotension. Frequently hypotension responds to calcium administration. - Induce emesis or administer lavage if patient presents within 4 hours of ingestion. Use sodium cathartics, with caution, in presence of cardiac or renal failure. - Activated charcoal is not useful. - Calcium is an antagonist of magnesium action and is an effective antidote when serum levels exceed 5 meq/L and the patient exhibits symptoms. The adult dose of calcium gluconate is 10 ml of a 10% solution over several minutes. [Ellenhorn and Barceloux: Medical Toxicology] # **SECTION 5 Firefighting measures** #### **Extinguishing media** - There is no restriction on the type of extinguisher which may be used. - Use extinguishing media suitable for surrounding area. #### Special hazards arising from the substrate or mixture | Fire Incompatibility | None known. | |-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Advice for firefighters | | | Fire Fighting | Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water courses. Use fire fighting procedures suitable for surrounding area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. | | Fire/Explosion Hazard | Decomposition may produce toxic fumes of: metal oxides May emit poisonous fumes. May emit corrosive fumes. Non combustible. Not considered a significant fire risk, however containers may burn. | | HAZCHEM | Not Applicable | #### **SECTION 6 Accidental release measures** #### Personal precautions, protective equipment and emergency procedures See section 8 # **Environmental precautions** See section 12 # Methods and material for containment and cleaning up Minor Spills - ► Remove all ignition sources. - Clean up all spills immediately. - Avoid contact with skin and eyes. Control personal contact with the substance, by using protective equipment. - Use dry clean up procedures and avoid generating dust. Issue Date: 27/04/2018 Print Date: 10/05/2021 Place in a suitable, labelled container for waste disposal. #### Moderate hazard - ► CAUTION: Advise personnel in area. - ▶ Alert Emergency Services and tell them location and nature of hazard. - ► Control personal contact by wearing protective clothing. **Major Spills** - Prevent, by any means available, spillage from entering drains or water courses. - Recover product wherever possible. - FIF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. Personal Protective Equipment advice is contained in Section 8 of the SDS. #### **SECTION 7 Handling and storage** #### Precautions for safe handling - Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs. - Use in a well-ventilated area - Safe handling - Prevent concentration in hollows and sumps. - DO NOT enter confined spaces until atmosphere has been checked. - DO NOT allow material to contact humans, exposed food or food utensils. - Avoid contact with incompatible materials. - When handling, DO NOT eat, drink or smoke. - Other information - ▶ Store in original containers. - Keep containers securely sealed. Store in a cool, dry area protected from environmental extremes. - Store away from incompatible materials and foodstuff containers. - Protect containers against physical damage and check regularly for leaks. ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. - For major quantities: - Consider storage in bunded areas ensure storage areas are isolated from sources of community water (including stormwater, ground water, lakes and streams) - Figure that accidental discharge to air or water is the subject of a contingency disaster management plan; this may require consultation with local authorities #### Conditions for safe storage, including any incompatibilities #### Suitable container - Polyethylene or polypropylene container. - Check all containers are clearly labelled and free from leaks. # Storage incompatibility Inorganic alkaline earth metal derivative. Derivative of very electropositive metal. ▶ Metals and their oxides or salts may react violently with chlorine trifluoride and bromine trifluoride. - These trifluorides are hypergolic oxidisers. They ignite on contact (without external source of heat or ignition) with recognised fuels contact with these materials, following an ambient or slightly elevated temperature, is often violent and may produce ignition. - ▶ The state of subdivision may affect the results. When burned in open air, the magnesium gets hot enough to produce noticeable amounts of yellow magnesium nitride. Burning in a covered crucible, letting in just enough air to support combustion, will reduce the burning temperature, minimizing the production of the nitride # SECTION 8 Exposure controls / personal protection # Control parameters #### Occupational Exposure Limits (OEL) #### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |------------------------------|-----------------|------------------------|----------|---------------|---------------|---------------| | Australia Exposure Standards | magnesium oxide | Magnesium oxide (fume) | 10 mg/m3 | Not Available | Not Available | Not Available | #### **Emergency Limits** | Ingredient | TEEL-1 | TEEL-2 | | TEEL-3 | |-----------------|---------------|-----------|---------------|-----------| | magnesium oxide | 30 mg/m3 | 120 mg/m3 | | 730 mg/m3 | | Ingredient | Original IDLH | | Revised IDLH | | | magnesium oxide | 750 mg/m3 | | Not Available | | # magnesium oxide **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: #### Appropriate engineering controls Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. Local exhaust ventilation usually required. #### Page 5 of 9 #### **MAGNESIUM OXIDE** Issue Date: **27/04/2018**Print Date: **10/05/2021** #### Personal protection - Safety glasses with side shields. - Chemical goggles. # Eye and face protection an • Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. #### Skin protection #### See Hand protection below #### NOTE: - The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. - ▶ Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. #### Hands/feet protection Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present. - polychloroprene. - nitrile rubber. - butyl rubber. - fluorocaoutchouc. - polyvinyl chloride - Gloves should be examined for wear and/ or degradation constantly. #### Body protection #### See Other protection below #### Other protection - Overalls. - P.V.C apron. - Barrier cream.Skin cleansing cream. - Eye wash unit. #### Respiratory protection Particulate. (AS/NZS 1716 & 1715, EN 143:2000 & 149:001, ANSI Z88 or national equivalent) | Required Minimum Protection Factor | Half-Face Respirator | Full-Face Respirator | Powered Air Respirator | |------------------------------------|----------------------|----------------------|------------------------| | up to 10 x ES | P1
Air-line* | - | PAPR-P1 | | up to 50 x ES | Air-line** | P2 | PAPR-P2 | | up to 100 x ES | - | P3 | - | | | | Air-line* | - | | 100+ x ES | - | Air-line** | PAPR-P3 | * - Negative pressure demand ** - Continuous flow A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures. - The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option). - Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended. - Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program. - ▶ Use approved positive flow mask if significant quantities of dust becomes airborne. - ▶ Try to avoid creating dust conditions. #### **SECTION 9 Physical and chemical properties** # Information on basic physical and chemical properties | Appearance | Fine white odourless powder; insoluble in water (0.0086 g/100 ml, 30 C) Mild alkaline reaction. Soluble in dilute acids and ammonium salts. Insoluble in alcohol. Available as Dense and Light grades; with Bulk density 0.20-0.90. Solubility in water @ 30 deg.C: 0.0086g/100 cc. | | | | |-----------------|---|---|---------------|--| | Physical state | Divided Solid Relative density (Water= 1) 3.58 @ 25 deg.C | | | | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | Chemwatch: **10217**Version No: **8.1.4.1** Page 6 of 9 #### **MAGNESIUM OXIDE** Issue Date: 27/04/2018 Print Date: 10/05/2021 | | 1 | | 1 | |--|------------------|----------------------------------|------------------| | pH (as supplied) | Not Applicable | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | 2852 | Viscosity (cSt) | Not Applicable | | Initial boiling point and boiling range (°C) | 3600 | Molecular weight (g/mol) | 40.30 | | Flash point (°C) | Not Applicable | Taste | Not Available | | Evaporation rate | Not Applicable | Explosive properties | Not Available | | Flammability | Not Applicable | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Applicable | Surface Tension (dyn/cm or mN/m) | Not Applicable | | Lower Explosive Limit (%) | Not Applicable | Volatile Component (%vol) | Negligible | | Vapour pressure (kPa) | Negligible | Gas group | Not Available | | Solubility in water | Insoluble 0.001% | pH as a solution (1%) | Saturated = 10.3 | | Vapour density (Air = 1) | Not Applicable | VOC g/L | Not Applicable | # **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | # **SECTION 11 Toxicological information** and lung emphysema. #### Information on toxicological effects | nformation on toxicological ef | ffects | |--------------------------------|--| | Inhaled | The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual. Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled. If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures. The inhalation of small particles of metal oxide results in sudden thirst, a sweet, metallic foul taste, throat irritation, cough, dry mucous membranes, tiredness and general unwellness. Headache, nausea and vomiting, fever or chills, restlessness, sweating, diarrhoea, excessive urination and prostration may also occur. | | Ingestion | Magnesium salts are generally absorbed so slowly that swallowing these cause few toxic effects, with purging being the most significant. If it cannot be removed (for example in bowel obstruction or paralysis), it may irritate the gut lining and be absorbed into the body. Side effects of magnesium salts include upset stomach, dry mouth, dry nose, dry throat, drowsiness, nausea, heartburn, and thickening of the lining of the throat and nose. The magnesium ion causes salt disturbances, central nervous system depression, involvement of the heart, loss of reflexes and death from paralysis of breathing; these effects, however, are rare without pre-existing kidney or bowel disorders. Early signs and symptoms of magnesium poisoning include nausea, vomiting, general unwellness and confusion. There may be low blood pressure due to dilation of blood vessels. A slow heart beat is common, which may eventually lead to stoppage of the heart. Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. | | Skin Contact | This material can cause inflammation of the skin on contact in some persons. The material may accentuate any pre-existing dermatitis condition Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. | | Eye | This material can cause eye irritation and damage in some persons. | | Chronic | Long-term exposure to respiratory irritants may result in airways disease, involving difficulty breathing and related whole-body problems. Strong evidence exists that this substance may cause irreversible mutations (though not lethal) even following a single exposure. Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population. Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. In a case of chronic abuse of magnesium citrate, symptoms seen included tiredness and severe low blood pressure which did not respond to treatment. Blood tests revealed extremely high levels of magnesium, and the patient was found to have a perforated ulcer of the duodenum. Kidney failure and death followed. A patient with normal kidney function developed stoppage of breathing and slow heart rate after receiving 90 grams of magnesium sulfate over 18 hours. Animal testing suggests that magnesium sulfate may reduce both fertility and the weight of offspring. Prolonged inhalation of high concentrations of magnesite (magnesium carbonate) dust caused pulmonary deposition and retention. Roasted magnesite (magnesium oxide) produced a greater degree of fibrosis than did crude magnesite. No cases of human systemic poisoning due to exposure to magnesite have been recorded. Pneumoconiosis was found in about 2% of workers exposed to high concentrations of dust from crude or roasted magnesite that also contained 1-3% silicon dioxide. Exposure periods ranged from 6-20 years. This condition occurred mainly in workers exposed to roasted (calcined) magnesite. The pneumoconiosis appeared to be "benign" and was often associated with chronic bronchitis | In other reports the severity of the pneumoconiosis was associated with the crystalline silica content of the dust or in a case of magnesium Chemwatch: **10217**Version No: **8.1.4.1** # Page 7 of 9 MAGNESIUM OXIDE Issue Date: **27/04/2018**Print Date: **10/05/2021** carbonate used in insulating materials, the severity of the disease depended on the asbestos content. | magnesium oxide | TOXICITY | IRRITATION | | | |-----------------|--|---------------|--|--| | | Not Available | Not Available | | | | Legend: | 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances | | | | The following information refers to contact allergens as a group and may not be specific to this product. MAGNESIUM OXIDE Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilla. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. | Acute Toxicity | × | Carcinogenicity | × | |-----------------------------------|----------|--------------------------|---| | Skin Irritation/Corrosion | ✓ | Reproductivity | × | | Serious Eye Damage/Irritation | ✓ | STOT - Single Exposure | ✓ | | Respiratory or Skin sensitisation | ✓ | STOT - Repeated Exposure | × | | Mutagenicity | ✓ | Aspiration Hazard | × | Legend X – Data either not available or does not fill the criteria for classification Data available to make classification ## **SECTION 12 Ecological information** #### **Toxicity** | magnesium oxide | Endpoint | Test Duration (hr) | Species | Value | Source | |-----------------|---|--------------------|---------------|------------------|------------------| | | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | Legend: | Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data | | | | | for magnesium compounds in general: Fish LC50: 100-400 mg/l For Metal: Atmospheric Fate - Metal-containing inorganic substances generally have negligible vapour pressure and are not expected to partition to air. Environmental Fate: Environmental processes, such as oxidation, the presence of acids or bases and microbiological processes, may transform insoluble metals to more soluble ionic forms. Environmental processes may enhance bioavailability and may also be important in changing solubilities. Aquatic/Terrestrial Fate: When released to dry soil, most metals will exhibit limited mobility and remain in the upper layer; some will leach locally into ground water and/ or surface water ecosystems when soaked by rain or melt ice. A metal ion is considered infinitely persistent because it cannot degrade further. Once released to surface waters and moist soils their fate depends on solubility and dissociation in water. A significant proportion of dissolved/ sorbed metals will end up in sediments through the settling of suspended particles. The remaining metal ions can then be taken up by aquatic organisms. Ionic species may bind to dissolved ligands or sorb to solid particles in water. **DO NOT** discharge into sewer or waterways. ### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |------------|---------------------------------------|---------------------------------------| | | No Data available for all ingredients | No Data available for all ingredients | # Bioaccumulative potential | Ingredient | Bioaccumulation | | |------------|---------------------------------------|--| | | No Data available for all ingredients | | # Mobility in soil | WODING III SOII | | |-----------------|---------------------------------------| | Ingredient | Mobility | | | No Data available for all ingredients | # **SECTION 13 Disposal considerations** Issue Date: **27/04/2018**Print Date: **10/05/2021** - Containers may still present a chemical hazard/ danger when empty. - ▶ Return to supplier for reuse/ recycling if possible. #### Otherwise: - If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. - ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - Reduction - ► Reuse - ► Recycling - Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. In most instances the supplier of the material should be consulted. - DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - ▶ Where in doubt contact the responsible authority. - Recycle wherever possible or consult manufacturer for recycling options. - Consult State Land Waste Management Authority for disposal. - ▶ Bury residue in an authorised landfill. - Recycle containers if possible, or dispose of in an authorised landfill. #### **SECTION 14 Transport information** Product / Packaging disposal #### Labels Required | Marine Pollutant | NO | | |------------------|----------------|--| | HAZCHEM | Not Applicable | | Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |-----------------|---------------| | magnesium oxide | Not Available | #### Transport in bulk in accordance with the ICG Code | Product name | Ship Type | |-----------------|---------------| | magnesium oxide | Not Available | # **SECTION 15 Regulatory information** # Safety, health and environmental regulations / legislation specific for the substance or mixture magnesium oxide is found on the following regulatory lists Australian Inventory of Industrial Chemicals (AIIC) #### **National Inventory Status** | National inventory Status | | | |--|---|--| | National Inventory | Status | | | Australia - AIIC / Australia
Non-Industrial Use | Yes | | | Canada - DSL | Yes | | | Canada - NDSL | No (magnesium oxide) | | | China - IECSC | Yes | | | Europe - EINEC / ELINCS / NLP | Yes | | | Japan - ENCS | Yes | | | Korea - KECI | Yes | | | New Zealand - NZIoC | Yes | | | Philippines - PICCS | Yes | | | USA - TSCA | Yes | | | Taiwan - TCSI | Yes | | | Mexico - INSQ | Yes | | | Vietnam - NCI | Yes | | | Russia - FBEPH | Yes | | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | | Issue Date: 27/04/2018 Print Date: 10/05/2021 #### **SECTION 16 Other information** | Revision Date | 27/04/2018 | |---------------|------------| | Initial Date | 01/11/2009 | #### **SDS Version Summary** | Version | Date of
Update | Sections Updated | |---------|-------------------|---| | 7.1.1.1 | 31/12/2015 | Acute Health (skin), CAS Number, Classification, Environmental, Fire Fighter (extinguishing media), Fire Fighter (fire/explosion hazard), First Aid (swallowed), Spills (major), Spills (minor), Transport, Transport Information | | 8.1.1.1 | 27/04/2018 | Chronic Health, Physical Properties, Synonyms | | 8.1.2.1 | 26/04/2021 | Regulation Change | | 8.1.3.1 | 03/05/2021 | Regulation Change | | 8.1.4.1 | 06/05/2021 | Regulation Change | #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations ES: Exposure Standard OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals DSL: Domestic Substances List NDSL: Non-Domestic Substances List IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances NLP: No-Longer Polymers ENCS: Existing and New Chemical Substances Inventory KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances #### This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.