FERRIC OXIDE #### **ALPHA CHEMICALS PTY LTD** Chemwatch: **10253** Version No: **7.1.1.1** Safety Data Sheet according to WHS and ADG requirements #### Chemwatch Hazard Alert Code: 2 Issue Date: **27/06/2017** Print Date: **19/06/2019** S.GHS.AUS.EN ## SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING #### **Product Identifier** | Product name | FERRIC OXIDE | | |-------------------------------|--|--| | Chemical Name | ferric oxide | | | Synonyms | Fe2O3; iron(III) oxide; diiron trioxide; C.I. Pigment Red 102 Natural Oxide; C.I. Pigment Red 101 Synthetic Oxide; CI77491; C.I. 77491; natural red oxide; rouge; raddle; synthetic iron oxide; blended red oxides of iron; red iron oxide; anhydrous iron oxide; sienna; red ochre; ferrugo; bauxite residue; stone red; prussian red; specular iron; burnt island red; Mars red; Mars brown; vitriol red; colloidal red oxide; transparent oxide; English red; Deanox pigments; yellow ferric oxide; yellow oxide of iron; Calcotone; Collcothar; burnt sienna; Vogel's iron red; Venetian red; Spanish red; burnt umber; iron stone; rust; haematite; hematite; Bayferrox; iron sesquioxide; 24/R1808; 24/R0228; red oxide; iron oxide; Primox 50 and Natural Red Oxide R; Iron oxide red | | | Chemical formula | Fe2-O3 | | | Other means of identification | Not Available | | | CAS number | 1309-37-1 | | ### Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses A pigment for rubber, paints, paper, linoleum, ceramics, glass; in paint for ironwork; as a polishing agent for glass, precious metals, diamonds; electrical resistors and semiconductors, magnets, magnetic tape. It is also used as a catalyst and in colloidal solutions as stain for polysaccharides. [~Intermediate ~I #### Details of the supplier of the safety data sheet | Registered company name | ALPHA CHEMICALS PTY LTD | |-------------------------|---| | Address | 4 ALLEN PLACE WETHERILL PARK NSW 2099 Australia | | Telephone | 61 (0)2 9982 4622 | | Fax | Not Available | | Website | ~ | | Email | shane@alphachem.com.au | ### Emergency telephone number | Association / Organisation | ALPHA CHEMICALS PTY LTD | CHEMWATCH EMERGENCY RESPONSE | |-----------------------------------|-------------------------|------------------------------| | Emergency telephone numbers | 61 (0)418 237 771 | +61 1800 951 288 | | Other emergency telephone numbers | Not Available | +61 2 9186 1132 | ## **SECTION 2 HAZARDS IDENTIFICATION** ## Classification of the substance or mixture ## HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. ## CHEMWATCH HAZARD RATINGS | | Min | Max | | |--------------|-----|-----|-------------------------| | Flammability | 0 | | | | Toxicity | 1 | | 0 = Minimum | | Body Contact | 2 | | 1 = Low
2 = Moderate | | Reactivity | 0 | | 3 = High | | Chronic | 0 | | 4 = Extreme | | Poisons Schedule | Not Applicable | | |--------------------|--|--| | Classification [1] | Skin Corrosion/Irritation Category 2, Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation), Eye Irritation Category 2A | | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | | #### Label elements Issue Date: **27/06/2017** Print Date: **19/06/2019** | SIGNAL WORD | |-------------| |-------------| WARNING #### Hazard statement(s) | H315 | Causes skin irritation. | |------|-----------------------------------| | H335 | May cause respiratory irritation. | | H319 | Causes serious eve irritation. | ## Precautionary statement(s) Prevention | P271 | Use only outdoors or in a well-ventilated area. | |------|--| | P261 | Avoid breathing dust/fumes. | | P280 | Wear protective gloves/protective clothing/eye protection/face protection. | ## Precautionary statement(s) Response | P362 | Take off contaminated clothing and wash before reuse. | | |----------------|--|--| | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | | P312 | Call a POISON CENTER or doctor/physician if you feel unwell. | | | P337+P313 | If eye irritation persists: Get medical advice/attention. | | | P302+P352 | IF ON SKIN: Wash with plenty of soap and water. | | | P304+P340 | P304+P340 IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing. | | | P332+P313 | If skin irritation occurs: Get medical advice/attention. | | ## Precautionary statement(s) Storage | P405 | Store locked up. | |-----------|--| | P403+P233 | Store in a well-ventilated place. Keep container tightly closed. | ## Precautionary statement(s) Disposal P501 Dispose of contents/container in accordance with local regulations. ## SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS ## Substances | CAS No | %[weight] | Name | |-----------|-----------|------------------| | 1309-37-1 | >99 | ferric oxide | | 7631-86-9 | <0.5 | silica amorphous | ## Mixtures See section above for composition of Substances ## **SECTION 4 FIRST AID MEASURES** ## Description of first aid measures | Description of first and measures | | | |-----------------------------------|---|--| | Eye Contact | If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | | | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | | Inhalation | If furnes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. | | | Ingestion | If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. | | Page 3 of 9 **FERRIC OXIDE** Issue Date: 27/06/2017 Print Date: 19/06/2019 #### Indication of any immediate medical attention and special treatment needed Treat symptomatically. For acute or short term repeated exposures to iron and its derivatives: - Always treat symptoms rather than history. - In general, however, toxic doses exceed 20 mg/kg of ingested material (as elemental iron) with lethal doses exceeding 180 mg/kg. - ▶ Control of iron stores depend on variation in absorption rather than excretion. Absorption occurs through aspiration, ingestion and burned skin. - Hepatic damage may progress to failure with hypoprothrombinaemia and hypoglycaemia. Hepatorenal syndrome may occur. - Firon intoxication may also result in decreased cardiac output and increased cardiac pooling which subsequently produces hypotension. - Serum iron should be analysed in symptomatic patients. Serum iron levels (2-4 hrs post-ingestion) greater that 100 ug/dL indicate poisoning with levels, in excess of 350 ug/dL, being potentially serious. Emesis or lavage (for obtunded patients with no gag reflex)are the usual means of decontamination. - · Activated charcoal does not effectively bind iron. - Catharsis (using sodium sulfate or magnesium sulfate) may only be used if the patient already has diarrhoea. - Deferoxamine is a specific chelator of ferric (3+) iron and is currently the antidote of choice. It should be administered parenterally. [Ellenhorn and Barceloux: Medical Toxicology] #### **SECTION 5 FIREFIGHTING MEASURES** #### Extinguishing media - ▶ There is no restriction on the type of extinguisher which may be used - Use extinguishing media suitable for surrounding area. #### Special hazards arising from the substrate or mixture | Special nazards arising from | the substrate of mixture | |------------------------------|--| | Fire Incompatibility | None known. | | Advice for firefighters | | | Fire Fighting | Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water courses. Use fire fighting procedures suitable for surrounding area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. | | Fire/Explosion Hazard | Non combustible. Not considered a significant fire risk, however containers may burn. Decomposition may produce toxic fumes of: metal oxides May emit poisonous fumes. May emit corrosive fumes. | | HAZCHEM | Not Applicable | ## **SECTION 6 ACCIDENTAL RELEASE MEASURES** ### Personal precautions, protective equipment and emergency procedures See section 8 ## **Environmental precautions** See section 12 #### Methods and material for containment and cleaning up | Minor Spills | Remove all ignition sources. Clean up all spills immediately. Avoid contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Use dry clean up procedures and avoid generating dust. Place in a suitable, labelled container for waste disposal. | |--------------|---| | Major Spills | Moderate hazard. CAUTION: Advise personnel in area. Alert Emergency Services and tell them location and nature of hazard. Control personal contact by wearing protective clothing. Prevent, by any means available, spillage from entering drains or water courses. Recover product wherever possible. IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. | Personal Protective Equipment advice is contained in Section 8 of the SDS. #### **SECTION 7 HANDLING AND STORAGE** ## Precautions for safe handling #### ▶ Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. ### Safe handling - Prevent concentration in hollows and sumps. - DO NOT enter confined spaces until atmosphere has been checked. - DO NOT allow material to contact humans, exposed food or food utensils. - Avoid contact with incompatible materials. - ► When handling, **DO NOT** eat, drink or smoke Version No: 7.1.1.1 **FERRIC OXIDE** Issue Date: 27/06/2017 Print Date: 19/06/2019 - Store in original containers. Keep containers securely sealed. - ▶ Store in a cool, dry, well-ventilated area. - - Store away from incompatible materials and foodstuff containers. - ▶ Protect containers against physical damage and check regularly for leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. #### Conditions for safe storage, including any incompatibilities #### Suitable container Storage incompatibility Other information - ► Polyethylene or polypropylene container. - Check all containers are clearly labelled and free from leaks. #### For iron oxide (ferric oxide): - ▶ Avoid storage with aluminium, calcium hypochlorite and ethylene oxide. - Risk of explosion occurs following reaction with powdered aluminium, calcium silicide, ethylene oxide (polymerises), carbon monoxide, magnesium and perchlorates. - ► Risk of ignition or formation of flammable gases or vapours occurs following reaction with carbides, for example caesium carbide, (produces heat), hydrogen sulfide, hydrogen peroxide (decomposes). - An intimately powered mixture with aluminium, usually ignited by magnesium ribbon, reacts with an intense exotherm to produce molten iron in the commercial "thermit" welding process - ▶ WARNING: Avoid or control reaction with peroxides. All transition metal peroxides should be considered as potentially explosive. For example transition metal complexes of alkyl hydroperoxides may decompose explosively. - ▶ The pi-complexes formed between chromium(0), vanadium(0) and other transition metals (haloarene-metal complexes) and mono-or poly-fluorobenzene show extreme sensitivity to heat and are explosive. - Avoid reaction with borohydrides or cyanoborohydrides - ▶ Metals and their oxides or salts may react violently with chlorine trifluoride and bromine trifluoride. - ▶ These trifluorides are hypergolic oxidisers. They ignite on contact (without external source of heat or ignition) with recognised fuels contact with these materials, following an ambient or slightly elevated temperature, is often violent and may produce ignition. - ▶ The state of subdivision may affect the results. #### **SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION** #### **Control parameters** #### OCCUPATIONAL EXPOSURE LIMITS (OEL) #### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | | |------------------------------|---------------------|---|-------------|------------------|------------------|---|--| | Australia Exposure Standards | ferric oxide | Iron oxide fume (Fe2O3) (as Fe) | 5
mg/m3 | Not
Available | Not
Available | Not Available | | | Australia Exposure Standards | silica
amorphous | Fumed silica (respirable dust) | 2
mg/m3 | Not
Available | Not
Available | See Silica -Amorphous | | | Australia Exposure Standards | silica
amorphous | Silica - Amorphous: Fume
(thermally generated)(respirable
dust) | 2
mg/m3 | Not
Available | Not
Available | (e) Containing no asbestos and < 1% crystalline silica. | | | Australia Exposure Standards | silica
amorphous | Silica - Amorphous: Fumed silica (respirable dust) | 2
mg/m3 | Not
Available | Not
Available | Not Available | | | Australia Exposure Standards | silica
amorphous | Diatomaceous earth (uncalcined) | 10
mg/m3 | Not
Available | Not
Available | See Silica -Amorphous; (a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica. | | | Australia Exposure Standards | silica
amorphous | Silica gel | 10
mg/m3 | Not
Available | Not
Available | See Silica -Amorphous; (a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica. | | | Australia Exposure Standards | silica
amorphous | Silica - Amorphous: Diatomaceous earth (uncalcined) | 10
mg/m3 | Not
Available | Not
Available | (a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica. | | | Australia Exposure Standards | silica
amorphous | Precipitated silica | 10
mg/m3 | Not
Available | Not
Available | See Silica -Amorphous; (a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica. | | | Australia Exposure Standards | silica
amorphous | Silica - Amorphous: Precipitated silica | 10
mg/m3 | Not
Available | Not
Available | (a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica. | | | Australia Exposure Standards | silica
amorphous | Silica - Amorphous: Silica gel | 10
mg/m3 | Not
Available | Not
Available | (a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica. | | #### **EMERGENCY LIMITS** | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |------------------|--|--------------|----------------|----------------| | ferric oxide | Iron oxide; (Ferric oxide) | 15 mg/m3 | 360 mg/m3 | 2,200
mg/m3 | | silica amorphous | Silica gel, amorphous synthetic | 18 mg/m3 | 200 mg/m3 | 1,200
mg/m3 | | silica amorphous | Silica, amorphous fumed | 18 mg/m3 | 100 mg/m3 | 630 mg/m3 | | silica amorphous | Siloxanes and silicones, dimethyl, reaction products with silica; (Hydrophobic silicon dioxide, amorphous) | 120
mg/m3 | 1,300
mg/m3 | 7,900
mg/m3 | | silica amorphous | Silica, amorphous fume | 45 mg/m3 | 500 mg/m3 | 3,000
mg/m3 | | silica amorphous | Silica amorphous hydrated | 18 mg/m3 | 220 mg/m3 | 1,300
mg/m3 | | Ingredient | Original IDLH | Revised IDLH | |--------------|---------------|---------------| | ferric oxide | 2,500 mg/m3 | Not Available | Page 5 of 9 **FERRIC OXIDE** Issue Date: 27/06/2017 Print Date: 19/06/2019 silica amorphous 3,000 mg/m3 Not Available #### **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction. #### Personal protection Appropriate engineering controls ## Eye and face protection Safety glasses with side shields. ▶ Chemical goggles Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. #### Skin protection See Hand protection below The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. #### Hands/feet protection Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present. - ▶ polychloroprene. - ▶ nitrile rubber. - ▶ butyl rubber. - ► fluorocaoutchouc - ▶ polyvinyl chloride. Gloves should be examined for wear and/ or degradation constantly. #### Body protection See Other protection below #### Other protection - ▶ Overalls. - P.V.C. apron. - Barrier cream. - Skin cleansing cream.Eye wash unit. #### Respiratory protection Particulate. (AS/NZS 1716 & 1715, EN 143:2000 & 149:001, ANSI Z88 or national equivalent) | Required Minimum Protection Factor | Half-Face Respirator | Full-Face Respirator | Powered Air Respirator | |------------------------------------|----------------------|----------------------|------------------------| | up to 10 x ES | P1
Air-line* | - | PAPR-P1
- | | up to 50 x ES | Air-line** | P2 | PAPR-P2 | | up to 100 x ES | - | P3 | - | | | | Air-line* | - | | 100+ x ES | - | Air-line** | PAPR-P3 | * - Negative pressure demand ** - Continuous flow A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - ▶ Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures. - The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option). - Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended. - Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program. - ▶ Use approved positive flow mask if significant quantities of dust becomes airborne. - Try to avoid creating dust conditions. Page 6 of 9 FERRIC OXIDE Issue Date: 27/06/2017 Print Date: 19/06/2019 ## Information on basic physical and chemical properties | Appearance | Odourless red to reddish brown powder; insoluble in wat as haematite. | ter. Soluble in hydrochloric and sulphuric | acids, and slightly soluble in nitric acid. Occurs naturally | |----------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------| | Physical state | Divided Solid | Relative density (Water = 1) | 4.6-5.4 | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Applicable | | pH (as supplied) | Not Applicable | Decomposition temperature | Not available. | | Melting point / freezing point (°C) | 1565 | Viscosity (cSt) | Not Applicable | | Initial boiling point and boiling range (°C) | Decomposes. | Molecular weight (g/mol) | 159.7 | | Flash point (°C) | Not Applicable | Taste | Not Available | | Evaporation rate | Not Applicable | Explosive properties | Not Available | | Flammability | Not Applicable | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Applicable | Surface Tension (dyn/cm or mN/m) | Not Applicable | | Lower Explosive Limit (%) | Not Applicable | Volatile Component (%vol) | Not Applicable | | Vapour pressure (kPa) | Not Applicable | Gas group | Not Available | | Solubility in water | Immiscible | pH as a solution (1%) | Not Applicable | | Vapour density (Air = 1) | Not Applicable | VOC g/L | Not Available | ## **SECTION 10 STABILITY AND REACTIVITY** | Reactivity | See section 7 | |------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | ## **SECTION 11 TOXICOLOGICAL INFORMATION** ## Information on toxicological effects | Inhaled | The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled. If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures. Welding fume with high levels of ferrous materials may lead to particle deposition in the lungs (siderosis) after long exposure. This clears up when exposure stops. Chronic exposure to iron dusts may lead to eye disorders. | |--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Ingestion | Accidental ingestion of the material may be damaging to the health of the individual. Iron poisoning results in pain in the upper abdomen and vomiting, and is followed hours later by shock, in severe cases coma and death. Iron toxicity increases in proportion to their solubility in the gastrointestinal tract. | | Skin Contact | This material can cause inflammation of the skin on contact in some persons. The material may accentuate any pre-existing dermatitis condition Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. | | Eye | This material can cause eye irritation and damage in some persons. | | Chronic | Long-term exposure to respiratory irritants may result in airways disease, involving difficulty breathing and related whole-body problems. Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. Overexposure to the breathable dust may cause coughing, wheezing, difficulty in breathing and impaired lung function. Chronic symptoms may include decreased vital lung capacity and chest infections. Repeated exposures in the workplace to high levels of fine-divided dusts may produce a condition known as pneumoconiosis, which is the lodgement of any inhaled dusts in the lung, irrespective of the effect. This is particularly true when a significant number of particles less than 0.5 microns (1/50000 inch) are present. Lung shadows are seen in the X-ray. Symptoms of pneumoconiosis may include a progressive dry cough, shortness of breath on exertion, increased chest expansion, weakness and weight loss. As the disease progresses, the cough produces stringy phlegm, vital capacity decreases further, and shortness of breath becomes more severe. Other signs or symptoms include changed breath sounds, reduced oxygen uptake during exercise, emphysema and rarely, pneumothorax (air in the lung cavity). Chronic excessive intake of iron have been associated with damage to the liver and pancreas. People with a genetic disposition to poor control over iron are at an increased risk. Welding furme with high levels of ferrous materials may lead to particle deposition in the lungs (siderosis) after long exposure. This clears up when exposure stops. Chronic exposure to iron dusts may lead to eye disorders. | Page 7 of 9 **FERRIC OXIDE** Issue Date: 27/06/2017 Print Date: 19/06/2019 | | TOXICITY | IRRITATION | |------------------|----------------------------------------------------------------|------------------------------------------------------------------| | ferric oxide | Oral (rat) LD50: >10000 mg/kg ^[2] | Not Available | | | TOXICITY | IRRITATION | | | Dermal (rabbit) LD50: >5000 mg/kg ^[2] | Eye (rabbit): non-irritating * | | silica amorphous | Inhalation (rat) LC50: >0.139 mg/l/14h**[Grace] ^[2] | Eye: no adverse effect observed (not irritating) ^[1] | | | Oral (rat) LD50: 3160 mg/kg ^[2] | Skin (rabbit): non-irritating * | | | | Skin: no adverse effect observed (not irritating) ^[1] | #### Legend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances #### FERRIC OXIDE Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. When experimental animals inhale synthetic amorphous silica (SAS) dust, it dissolves in the lung fluid and is rapidly eliminated. If swallowed, the vast majority of SAS is excreted in the faeces and there is little accumulation in the body. Following absorption across the gut, SAS is eliminated via urine without modification in animals and humans. SAS is not expected to be broken down (metabolised) in mammals. #### SILICA AMORPHOUS After ingestion, there is limited accumulation of SAS in body tissues and rapid elimination occurs. Intestinal absorption has not been calculated, but appears to be insignificant in animals and humans. SASs injected subcutaneously are subjected to rapid dissolution and removal. There is no indication of metabolism of SAS in animals or humans based on chemical structure and available data. The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing. Reports indicate high/prolonged exposures to amorphous silicas induced lung fibrosis in experimental animals; in some experiments these effects were reversible. [PATTYS] | Acute Toxicity | × | Carcinogenicity | × | |-----------------------------------|---|--------------------------|---| | Skin Irritation/Corrosion | ✓ | Reproductivity | × | | Serious Eye Damage/Irritation | ✓ | STOT - Single Exposure | ✓ | | Respiratory or Skin sensitisation | × | STOT - Repeated Exposure | × | | Mutagenicity | X | Aspiration Hazard | × | X - Data either not available or does not fill the criteria for classification – Data available to make classification #### **SECTION 12 ECOLOGICAL INFORMATION** #### **Toxicity** | | ENDPOINT | TEST DURATION (HR) | SPECIES | | VALUE | SOURCE | |------------------|----------|--------------------|-------------------------------|----------------------------------|-----------|--------| | | LC50 | 96 | Fish | | 0.05mg/L | 2 | | ferric oxide | EC50 | 48 | Crustacea | Crustacea | | 2 | | | EC50 | 72 | Algae or other aquatic plants | Algae or other aquatic plants 18 | | 2 | | | NOEC | 504 | Fish | i | 0.52mg/L | 2 | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VA | LUE | SOURCE | | | LC50 | 96 | Fish | 1-2 | 89.09mg/L | 2 | | silica amorphous | EC50 | 48 | Crustacea | rustacea ca.7600mg/L | | 1 | | | EC50 | 72 | Algae or other aquatic plants | 440mg/L | | 1 | | | NOEC | 720 | Crustacea | 34. | 223mg/L | 2 | Leaend: Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data Atmospheric Fate - Metal-containing inorganic substances generally have negligible vapour pressure and are not expected to partition to air. Environmental Fate: Environmental processes, such as oxidation, the presence of acids or bases and microbiological processes, may transform insoluble metals to more soluble ionic forms. Environmental processes may enhance bioavailability and may also be important in changing solubilities. Aquatic/Terrestrial Fate: When released to dry soil, most metals will exhibit limited mobility and remain in the upper layer; some will leach locally into ground water and/ or surface water ecosystems when soaked by rain or melt ice. A metal ion is considered infinitely persistent because it cannot degrade further. Once released to surface waters and moist soils their fate depends on solubility and dissociation in water. A significant proportion of dissolved/ sorbed metals will end up in sediments through the settling of suspended particles. The remaining metal ions can then be taken up by aquatic organisms. Ionic species may bind to dissolved ligands or sorb to solid particles in water. Page 8 of 9 **FERRIC OXIDE** Issue Date: **27/06/2017**Print Date: **19/06/2019** #### Persistence and degradability | Ingredient | Persistence: Water/Soil Persistence: Air | | |------------------|------------------------------------------|-----| | silica amorphous | LOW | LOW | #### **Bioaccumulative potential** | Ingredient | Bioaccumulation | |------------------|-----------------------| | silica amorphous | LOW (LogKOW = 0.5294) | #### Mobility in soil | Ingredient | Mobility | |------------------|-------------------| | silica amorphous | LOW (KOC = 23.74) | #### **SECTION 13 DISPOSAL CONSIDERATIONS** #### Waste treatment methods Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - ► Reduction - Reuse - Recycling - ► Disposal (if all else fails) #### Product / Packaging disposal This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. In most instances the supplier of the material should be consulted. - DO NOT allow wash water from cleaning or process equipment to enter drains - It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - ▶ Where in doubt contact the responsible authority. - Recycle wherever possible or consult manufacturer for recycling options. - Consult State Land Waste Management Authority for disposal. - ▶ Bury residue in an authorised landfill. - Recycle containers if possible, or dispose of in an authorised landfill. #### **SECTION 14 TRANSPORT INFORMATION** ### **Labels Required** | Marine Pollutant | NO | |------------------|----------------| | HAZCHEM | Not Applicable | Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### **SECTION 15 REGULATORY INFORMATION** ## Safety, health and environmental regulations / legislation specific for the substance or mixture #### FERRIC OXIDE(1309-37-1) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Exposure Standards Australia Inventory of Chemical Substances (AICS) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Index Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 4 Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6 International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs #### SILICA AMORPHOUS(7631-86-9) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Exposure Standards Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Inventory of Chemical Substances (AICS) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Index Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 4 GESAMP/EHS Composite List - GESAMP Hazard Profiles International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS) ## **National Inventory Status** | - | |--------------------| | National Inventory | # Issue Date: **27/06/2017**Print Date: **19/06/2019** #### **FERRIC OXIDE** | Australia - AICS | Yes | |-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Canada - DSL | Yes | | Canada - NDSL | No (ferric oxide) | | China - IECSC | Yes | | Europe - EINEC / ELINCS / NLP | Yes | | Japan - ENCS | Yes | | Korea - KECI | Yes | | New Zealand - NZIoC | Yes | | Philippines - PICCS | Yes | | USA - TSCA | Yes | | Taiwan - TCSI | Yes | | Mexico - INSQ | Yes | | Vietnam - NCI | Yes | | Russia - ARIPS | Yes | | Thailand - TECI | Yes | | Legend: | Yes = All CAS declared ingredients are on the inventory No = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | #### **SECTION 16 OTHER INFORMATION** | Revision Date | 27/06/2017 | |---------------|---------------| | Initial Date | Not Available | #### **SDS Version Summary** | Version | Issue
Date | Sections Updated | |---------|---------------|--| | 6.1.1.1 | 03/02/2008 | Acute Health (eye), Acute Health (inhaled), Acute Health (skin), Acute Health (swallowed), Chronic Health, Classification, Disposal, Engineering Control, Environmental, Exposure Standard, Fire Fighter (fire/explosion hazard), Fire Fighter (fire fighting), Fire Fighter (fire incompatibility), First Aid (inhaled), Handling Procedure, Personal Protection (other), Personal Protection (eye), Personal Protection (hands/feet), Physical Properties, Spills (major), Spills (minor), Storage (storage incompatibility), Storage (storage requirement), Storage (suitable container), Supplier Information, Synonyms, Use | | 7.1.1.1 | 27/06/2017 | Synonyms | #### Other information ### Ingredients with multiple cas numbers | Name | CAS No | |------------------|--| | silica amorphous | 7631-86-9, 112945-52-5, 67762-90-7, 68611-44-9, 68909-20-6, 112926-00-8, 61790-53-2, 60676-86-0, 91053-39-3, 69012-64-2, 844491-94-7 | Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. ## **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC—STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.